Präzisions-Leiterplattenherstellung, Hochfrequenz-Leiterplatten, mehrschichtige Leiterplatten und Leiterplattenbestückung.
Leiterplattentechnisch

Leiterplattentechnisch - Analyse von Temperaturanstiegsfaktoren von Leiterplatten und Lösungen

Leiterplattentechnisch

Leiterplattentechnisch - Analyse von Temperaturanstiegsfaktoren von Leiterplatten und Lösungen

Analyse von Temperaturanstiegsfaktoren von Leiterplatten und Lösungen

2021-09-13
View:419
Author:Aure

Analyse von Temperaturanstiegsfaktoren von Leiterplatten und Lösungen


Die Wärme, die von elektronischen Geräten während des Betriebs erzeugt wird, verursacht, dass die Innentemperatur der Ausrüstung schnell ansteigt. Wenn die Wärme nicht rechtzeitig abgeführt wird, erwärmt sich die Ausrüstung weiter, das Gerät schlägt aufgrund von Überhitzung fehl und die Zuverlässigkeit der elektronischen Ausrüstung nimmt ab. Daher ist es sehr wichtig, Wärme von der Leiterplatte abzuleiten. Im Folgenden finden Sie den relevanten Erfahrungsaustausch, der von dieser PCB-Fabrik für Sie organisiert wird!

Die direkte Ursache für den Temperaturanstieg der Leiterplatte ist auf das Vorhandensein von Stromverbrauchsgeräten der Schaltung zurückzuführen. Elektronische Geräte haben alle einen unterschiedlichen Stromverbrauch, und die Heizintensität variiert mit der Größe des Stromverbrauchs.

Zwei Phänomene des Temperaturanstiegs in Leiterplatten:

(1) Lokaler Temperaturanstieg oder großer Temperaturanstieg;

(2) Kurzfristiger Temperaturanstieg oder langfristiger Temperaturanstieg.

Bei der Analyse des thermischen Stromverbrauchs von Leiterplatten wird er im Allgemeinen aus den folgenden Aspekten analysiert.

1. Stromverbrauch

(1) Analysieren Sie den Stromverbrauch pro Einheitsfläche;

(2) Analysieren Sie die Verteilung des Stromverbrauchs auf der Leiterplatte.

2. Die Struktur der gedruckten Pappe

(1) die Größe der Leiterplatte;

(2) Das Material der Leiterplatte.

3. Wie man die Leiterplatte installiert

(1) Installationsmethode (wie vertikale Installation, horizontale Installation);

(2) Die Dichtungszustand und der Abstand vom Gehäuse.


Analyse von Temperaturanstiegsfaktoren von Leiterplatten und Lösungen

4. Thermische Strahlung

(1) Der Emissionsgrad der Leiterplattenoberfläche;

(2) Temperaturunterschied zwischen der Leiterplatte und angrenzenden Oberflächen und deren absolute Temperatur;

5. Wärmeleitung

(1) Einbau des Heizkörpers;

(2) Durchführung anderer baulicher Teile der Anlage.

6. Thermische Konvektion

(1) Natürliche Konvektion;

(2) Erzwungene Kühlkonvektion.

Die Analyse der oben genannten Faktoren von PCB ist eine effektive Möglichkeit, den Temperaturanstieg der Leiterplatte zu lösen. Diese Faktoren sind in einem Produkt und System oft miteinander verbunden und voneinander abhängig. Die meisten Faktoren sollten nach der tatsächlichen Situation und nur für eine bestimmte Ist-Situation analysiert werden. Nur in dieser Situation können Parameter wie Temperaturanstieg und Stromverbrauch genauer berechnet oder geschätzt werden.

Verfahren zur Wärmeableitung von Leiterplatten

1. Hohe wärmeerzeugende Komponenten plus Heizkörper und wärmeleitende Platte

Wenn eine kleine Anzahl von Komponenten in der Leiterplatte eine große Menge an Wärme erzeugt (weniger als 3), kann ein Heizkörper oder ein Wärmerohr zur Heizkomponente hinzugefügt werden. Wenn die Temperatur nicht gesenkt werden kann, kann ein Heizkörper mit einem Ventilator verwendet werden, um den Wärmeableitungseffekt zu verbessern. Wenn die Anzahl der Heizgeräte groß ist (mehr als 3), kann eine große Wärmeableitungsabdeckung (Platine) verwendet werden, die ein spezieller Kühlkörper ist, der entsprechend der Position und Höhe des Heizgeräts auf der Leiterplatte oder einem großen flachen Kühlkörper angepasst ist. Die Wärmeableitungsabdeckung ist auf der Oberfläche der Komponente integral geknickt, und es ist in Kontakt mit jeder Komponente, um Wärme abzuleiten. Der Wärmeableitungseffekt ist jedoch aufgrund der schlechten Konsistenz der Höhe während der Montage und des Schweißens von Komponenten nicht gut. Normalerweise wird ein weiches thermisches Phasenwechsel-Thermopad auf der Oberfläche der Komponente hinzugefügt, um den Wärmeableitungseffekt zu verbessern.

2. Wärmeableitung durch die Leiterplatte selbst

Derzeit sind die weit verbreiteten Leiterplatten kupferplattierte/epoxidglastuchsubstrate oder Phenolharzglastuchsubstrate, und eine kleine Menge papierbasierter kupferplattierter Platten wird verwendet. Obwohl diese Substrate ausgezeichnete elektrische Eigenschaften und Verarbeitungseigenschaften haben, weisen sie eine schlechte Wärmeableitung auf. Als Wärmeableitungspfad für hocherhitzende Komponenten ist es fast unmöglich zu erwarten, dass Wärme vom Harz der Leiterplatte selbst Wärme leitet, aber Wärme von der Oberfläche des Bauteils an die Umgebungsluft ableitet. Da elektronische Produkte jedoch in die Ära der Miniaturisierung von Komponenten, der Montage mit hoher Dichte und der Montage mit hoher Erwärmung eingetreten sind, reicht es nicht aus, sich auf die Oberfläche eines Bauteils mit einer sehr kleinen Oberfläche zu verlassen, um Wärme abzuleiten. Gleichzeitig wird aufgrund des umfangreichen Einsatzes von Oberflächenmontagekomponenten wie QFP und BGA eine große Menge an Wärme, die von den Komponenten erzeugt wird, auf die Leiterplatte übertragen. Daher ist der beste Weg, das Problem der Wärmeableitung zu lösen, die Wärmeableitungskapazität der Leiterplatte selbst zu verbessern, die in direktem Kontakt mit dem Heizelement steht, durch die Leiterplatte. Zu übertragen oder auszustrahlen.

3. Verwenden Sie angemessenes Verdrahtungsdesign, um Wärmeableitung zu erreichen

Da das Harz in der Platte eine schlechte Wärmeleitfähigkeit hat und die Kupferfolienlinien und -löcher gute Wärmeleiter sind, sind die Erhöhung der Restrate der Kupferfolie und die Erhöhung der Wärmeleitungslöcher die Hauptmittel der Wärmeableitung.

Um die Wärmeableitungskapazität der Leiterplatte zu bewerten, ist es notwendig, die äquivalente Wärmeleitfähigkeit (neun eq) des Verbundmaterials zu berechnen, das aus verschiedenen Materialien mit unterschiedlicher Wärmeleitfähigkeit besteht – dem isolierenden Substrat für die Leiterplatte.

4. Für Geräte, die freie Konvektionsluftkühlung annehmen, ist es am besten, integrierte Schaltkreise (oder andere Geräte) vertikal oder horizontal anzuordnen.

5. Die Geräte auf derselben Leiterplatte sollten so weit wie möglich nach ihrem Heizwert und Grad der Wärmeableitung angeordnet sein. Geräte mit niedrigem Heizwert oder schlechter Hitzebeständigkeit (wie kleine Signaltransistoren, kleine integrierte Schaltkreise, Elektrolytkondensatoren usw.) sollten platziert werden. Der oberste Strom des Kühlluftstroms (am Eingang), und die Geräte mit großer Wärmeerzeugung oder guter Wärmebeständigkeit (wie Leistungstransistoren, großflächigen integrierten Schaltkreisen usw.) sind am unteren Teil des Kühlluftstroms platziert.

6. In horizontaler Richtung sollten Hochleistungsgeräte so nah wie möglich an der Kante der Leiterplatte platziert werden, um den Wärmeübertragungsweg zu verkürzen; In vertikaler Richtung sollten Hochleistungsgeräte so nah wie möglich an der Oberseite der Leiterplatte platziert werden, um die Temperatur anderer Geräte zu senken, wenn diese Geräte arbeiten. Aufprall.

7. Das temperaturempfindliche Gerät wird am besten im niedrigsten Temperaturbereich (wie der Unterseite des Geräts) platziert. Stellen Sie es niemals direkt über das Heizgerät. Es ist am besten, mehrere Geräte auf der horizontalen Ebene zu stagnieren.


8. Die Wärmeableitung der Leiterplatte in der Ausrüstung beruht hauptsächlich auf Luftstrom, so dass der Luftstrompfad während des Entwurfs studiert werden sollte, und das Gerät oder die Leiterplatte sollte angemessen konfiguriert werden. Wenn Luft strömt, neigt sie immer dazu, an Orten mit geringem Widerstand zu fließen. Wenn Sie also Geräte auf einer Leiterplatte konfigurieren, vermeiden Sie, einen großen Luftraum in einem bestimmten Bereich zu verlassen. Die Konfiguration mehrerer Leiterplatten in der gesamten Maschine sollte auch auf das gleiche Problem achten.

9. Vermeiden Sie die Konzentration von Hot Spots auf der Leiterplatte, verteilen Sie die Leistung gleichmäßig auf der Leiterplatte so viel wie möglich und halten Sie die Leistung der Leiterplattenoberfläche gleichmäßig und konstant. Es ist oft schwierig, eine strenge gleichmäßige Verteilung während des Entwurfsprozesses zu erreichen, aber Bereiche mit zu hoher Leistungsdichte müssen vermieden werden, um zu verhindern, dass Hot Spots den normalen Betrieb des gesamten Stromkreises beeinträchtigen. Wenn möglich, ist es notwendig, die thermische Effizienz der gedruckten Schaltung zu analysieren. Zum Beispiel kann das Softwaremodul zur Analyse des thermischen Wirkungsgrades, das in einigen professionellen PCB-Design-Software hinzugefügt wird, Designern helfen, das Schaltungsdesign zu optimieren.


10. Ordnen Sie die Geräte mit dem höchsten Stromverbrauch und der höchsten Wärmeerzeugung in der Nähe der besten Position für Wärmeableitung an. Stellen Sie keine Hochheizgeräte an den Ecken und Randkanten der Leiterplatte auf, es sei denn, ein Kühlkörper ist in der Nähe angeordnet. Wählen Sie bei der Gestaltung des Leistungswiderstands so viel wie möglich ein größeres Gerät und sorgen Sie dafür, dass es genügend Platz für Wärmeableitung hat, wenn Sie das Layout der Leiterplatte anpassen.

11. Beim Anschluss von Geräten mit hoher Wärmeableitung an das Substrat sollte der thermische Widerstand zwischen ihnen so weit wie möglich reduziert werden. Um die Anforderungen an die thermischen Eigenschaften besser zu erfüllen, können einige wärmeleitende Materialien (wie das Auftragen einer Schicht aus thermischem Kieselgel) auf der unteren Oberfläche des Chips verwendet werden, und eine bestimmte Kontaktfläche wird beibehalten, damit das Gerät Wärme ableitet.

12. Die Verbindung zwischen dem Gerät und dem Substrat:

(1) Versuchen Sie, die Bleilänge des Geräts zu verkürzen;

(2) Bei der Auswahl von Hochleistungsgeräten sollte die Wärmeleitfähigkeit des Bleimaterials berücksichtigt werden, und der größte Querschnitt des Bleis sollte so weit wie möglich ausgewählt werden;

(3) Wählen Sie ein Gerät mit mehr Pins.

13. Gerätepaketauswahl:

(1) Achten Sie bei der Erwägung des thermischen Designs auf die Packungsbeschreibung des Geräts und seine Wärmeleitfähigkeit;

(2) Erwägen Sie die Bereitstellung eines guten Wärmeleitweges zwischen dem Substrat und dem Gerätepaket;

(3) Lufttrennwände sollten im Wärmeleitungspfad vermieden werden. Ist dies der Fall, können wärmeleitende Materialien zur Befüllung verwendet werden.