1、過孔的基本概念
通過 是 多層PCB, 鑽孔成本通常占PCB製造成本的3.0%-4.0%. 簡單地說, PCB上的每個孔都可以稱為通孔. 從功能的角度來看, 過孔可分為兩類:一類用於層間的電力連接; 另一個用於固定或定位設備. 在流程方面, 這些過孔通常分為3類, 即盲孔, 埋入過孔和貫穿過孔. 盲孔位於 印刷電路板 有一定的深度. 它們用於連接曲面線和基礎內線. The depth of the hole usually does not exceed a certain ratio (aperture). 埋孔是指位於 印刷電路板, 不會延伸到電路板表面. 上述兩種類型的孔位於電路板的內層, 並在層壓前通過通孔成型工藝完成, 在通孔形成過程中,若干內層可能重疊.
第3種類型稱為通孔,它穿透整個電路板,可用於內部互連或作為組件安裝定位孔。 由於通孔更容易在工藝中實現且成本較低,大多數印刷電路板使用它來代替其他兩種類型的通孔。 除非另有規定,否則以下通孔視為通孔。
通過
從設計角度來看, 過孔主要由兩部分組成, 一個是中間的鑽孔, 另一個是鑽孔周圍的襯墊區域. 這兩部分的大小决定了過孔的大小. 明顯地, 高速行駛時, 高密度PCB 設計, 設計師總是希望通孔越小, 更好的, 這樣可以在板上留下更多的佈線空間. 此外, 通孔越小, 自身寄生電容. 越小越好, 它越適合高速電路. 然而, 孔尺寸的减小也會帶來成本的新增, 而且通孔的大小不能無限期地减小. 它受到鑽孔和電鍍等工藝科技的限制:孔越小, 鑽孔越多,鑽孔時間越長, 越容易偏離中心位置; 當鑽孔深度超過鑽孔直徑的6.倍時, 不能保證孔壁能均勻鍍銅. 例如, 如果法線的厚度 6層PCB板(through hole depth) is 5.0Mil, 然後在正常條件下, PCB製造商提供的最小鑽孔直徑只能達到8Mil. 隨著雷射打孔科技的發展, 孔的大小可以越來越小. 通常地, 直徑小於或等於6Mils的通孔稱為微孔. Microvias are often used in HDI (High Density Interconnect Structure) 設計s. Microvia technology allows vias to be directly punched on the pad (通過-in-pad), 大大提高了電路效能,節省了佈線空間.
過孔在傳輸線上表現為阻抗不連續的中斷點,這將導致訊號反射。 通常,通孔的等效阻抗比傳輸線的等效阻抗低約12.%。 例如,50歐姆傳輸線的阻抗在通過過孔時將减小6歐姆(具體而言,它與過孔的尺寸和厚度有關,而不是絕對减小)。 然而,通孔的不連續阻抗引起的反射實際上非常小。 反射係數僅為:(44-50)/(44+50)=0.06。 通孔引起的問題更多地集中在寄生電容和電感上。 影響
2、過孔的寄生電容和電感
通孔本身具有寄生雜散電容。 如果已知通孔接地層上的阻焊劑的直徑為D2,通孔焊盤的直徑為D1,PCB板的厚度為T,板基板的介電常數為µ,則通孔的寄生電容約為:C=1.41µTD1/(D2-D1)
通孔寄生電容對電路的主要影響是延長訊號的上升時間並降低電路的速度。 例如,對於厚度為50Mil的PCB,如果過孔焊盤的直徑為20Mil(鑽孔直徑為10mil),而阻焊板的直徑為40Mil, 然後,我們可以使用上述公式近似過孔的尺寸。寄生電容大致為:C=1.41x4.4x0.050x0.020/(0.040-0.020)=0.31pF。這部分電容引起的上升時間變化大致為:T10-90=2.2C(Z0/2)=2.2x0。 31x(50/2)=17.05ps
從這些值可以看出,雖然單個過孔的寄生電容引起的上升延遲的影響不是很明顯,但如果在記錄道中多次使用過孔在層間切換,將使用多個過孔。, 必須仔細考慮設計。 在實際設計中,可以通過新增通孔和銅區域(反焊盤)之間的距離或减小焊盤的直徑來减小寄生電容。
過孔中存在寄生電容和寄生電感。 在高速數位電路設計中,過孔寄生電感的危害往往大於寄生電容的影響。 其寄生串聯電感會削弱旁路電容的貢獻,削弱整個電力系統的濾波效果。 我們可以使用以下經驗公式簡單地計算過孔的寄生電感:L=5.08h[ln(4h/d)+1],其中L是過孔的電感,h是過孔的長度,d是中心孔的直徑。 從公式中可以看出,通孔直徑對電感的影響較小,通孔長度對電感的影響最大。 仍然使用上述示例,過孔的電感可計算為:L=5.08x0.050[ln(4x0.050/0.010)+1]=1.015nH如果訊號的上升時間為1ns,則其等效阻抗為:XL=ÏL/T10-90=3.19Î)。 當高頻電流通過時,這種阻抗不再可以忽略。 應特別注意,在連接電源面和接地層時,旁路電容器需要穿過兩個過孔,以便過孔的寄生電感將成倍新增。
過孔寄生電容和電感
3、如何使用過孔
通過以上對過孔寄生特性的分析, 我們可以在 高速PCB design, 看似簡單的通孔往往會給電路設計帶來很大的負面影響. 為了减少過孔寄生效應造成的不利影響, 在設計中可以做到以下幾點:
考慮到成本和訊號質量,選擇合理的通孔尺寸。 如有必要,可以考慮使用不同尺寸的過孔。 例如,對於電源或接地過孔,可以考慮使用較大的尺寸來降低阻抗,對於訊號跡線,可以使用較小的過孔。 當然,隨著過孔尺寸的减小,相應的成本也會新增。
2. 以上討論的兩個公式可以得出結論,使用更薄的PCB有助於减少過孔的兩個寄生參數.
3. 儘量不要更改PCB板上的訊號記錄道層, 那就是, 儘量不要使用不必要的過孔.
4. 電源和地面的針腳應在附近鑽孔, 通孔和引脚之間的導線應盡可能短. 考慮並行鑽取多個過孔,以减少等效電感.
5. 在訊號改變層的過孔附近放置一些接地過孔,為訊號提供最近的返回路徑. 您甚至可以在PCB上放置一些冗餘的接地過孔.
6. 對於高密度 高速PCB 董事會, 您可以考慮使用微型過孔.