Präzisions-Leiterplattenherstellung, Hochfrequenz-Leiterplatten, mehrschichtige Leiterplatten und Leiterplattenbestückung.
PCB-Neuigkeiten

PCB-Neuigkeiten - Drei spezielle Verdrahtungstechniken für das PCB-Design

PCB-Neuigkeiten

PCB-Neuigkeiten - Drei spezielle Verdrahtungstechniken für das PCB-Design

Drei spezielle Verdrahtungstechniken für das PCB-Design

2021-09-29
View:477
Author:Kavie

Im Folgenden wird das Layout des PCB-Designs aus drei Aspekten beschrieben: rechtwinklige Verdrahtung, Differenzverdrahtung und Serpentinenverdrahtung:

1. Rechtwinklige Führung (drei Aspekte)

Der Einfluss der rechtwinkligen Verdrahtung auf das Signal spiegelt sich hauptsächlich in drei Aspekten wider: Erstens kann die Ecke einer kapazitiven Last auf der Übertragungsleitung entsprechen, die die Anstiegszeit verlangsamt; Die andere ist, dass Impedanzkonstinuität Signalreflexion verursacht; Die dritte ist, dass die rechtwinklige Spitze erzeugt wird Im Bereich des HF-Designs über 10GHz können diese kleinen rechten Winkel zum Fokus von Hochgeschwindigkeitsproblemen werden.

2. Differenzverdrahtung ("gleiche Länge, äquidistant, Bezugsebene")

Was ist ein Differenzsignal? In Laienangaben sendet das Antriebsende zwei gleiche und umgekehrte Signale, und das Empfangsende beurteilt den logischen Zustand "0" oder "1", indem es die Differenz zwischen den beiden Spannungen vergleicht. Das Paar von Leitern, die Differenzsignale tragen, wird Differentialspuren genannt. Verglichen mit gewöhnlichem single-ended Signal Routing hat Differentialsignal offensichtliche Vorteile in den folgenden drei Aspekten:

1. Starke Anti-Interferenz Fähigkeit, weil die Kopplung zwischen den beiden differentiellen Spuren sehr gut ist. Bei Störgeräuschen von außen sind sie fast gleichzeitig an die beiden Leitungen gekoppelt, und das Empfangsende kümmert sich nur um den Unterschied zwischen den beiden Signalen. Dadurch kann das externe Gleichtaktrauschen vollständig abgebrochen werden.

2. Es kann EMI effektiv unterdrücken. Aus dem gleichen Grund kann sich aufgrund der entgegengesetzten Polarität der beiden Signale das von ihnen ausgestrahlte elektromagnetische Feld gegenseitig aufheben. Je enger die Kupplung ist, desto weniger wird die elektromagnetische Energie nach außen entlüftet.

3. Die Zeitpositionierung ist genau. Da die Schalterwechsel des Differenzsignals am Schnittpunkt der beiden Signale liegt, im Gegensatz zum gewöhnlichen einseitigen Signal, das von den hohen und niedrigen Schwellenspannungen abhängt, um zu bestimmen, wird es weniger durch den Prozess und die Temperatur beeinflusst und kann den Fehler im Timing verringern., Aber auch besser geeignet für Signalschaltungen mit geringer Amplitude. Die aktuelle populäre LVDS (Low Voltage Differential Signaling) bezieht sich auf diese kleine Amplitudendifferenzsignalisierungstechnologie.

Drei, Schlangenlinie (justieren Sie die Verzögerung)

Schlangenlinie ist eine Art Routing-Methode, die häufig im Layout verwendet wird. Sein Hauptzweck ist es, die Verzögerung anzupassen, um die Systemzeitentwurfsanforderungen zu erfüllen. Die beiden wichtigsten Parameter sind die parallele Kupplungslänge (Lp) und der Kupplungsabstand (S). Wenn ein Signal auf einer Serpentinenspur übertragen wird, werden die parallelen Liniensegmente natürlich differenziert gekoppelt. Je kleiner die Lp, desto größer der Kopplungsgrad. Es kann dazu führen, dass die Übertragungsverzögerung reduziert wird, und die Qualität des Signals wird aufgrund von Übersprechen stark reduziert. Der Mechanismus kann sich auf die Analyse von Gleichtakt- und Differenzmodus-Übersprechen beziehen. Im Folgenden finden Sie einige Vorschläge für Layouttechniker, wenn Sie sich mit Serpentinen befassen:

1. Versuchen Sie, den Abstand (S) von parallelen Liniensegmenten zu erhöhen, mindestens größer als 3H, H bezieht sich auf den Abstand von der Signalspur zur Referenzebene. Für Laien heißt es, um eine große Kurve zu gehen. Solange S groß genug ist, kann der gegenseitige Kopplungseffekt nahezu vollständig vermieden werden.

2. Verringern Sie die Kupplungslänge Lp. Wenn die doppelte Lp-Verzögerung nahe oder überschreitet die Signalanstiegszeit, erreicht das erzeugte Übersprechen die Sättigung.

3. Die Signalübertragungsverzögerung, die durch die Serpentinenleitung der Strip-Line oder des eingebetteten Micro-Strips verursacht wird, ist geringer als die des Micro-Strips. Theoretisch beeinflusst die Streifenlinie die Übertragungsrate aufgrund des Differenzmodus-Übersprechens nicht.

4. Versuchen Sie bei Signalleitungen mit hohen Geschwindigkeits- und strengen Zeitanforderungen, keine Serpentinenleitungen zu verwenden, besonders in kleinen Bereichen.

5. Es ist möglich, oft Serpentinenspuren in jedem Winkel zu verwenden, was die gegenseitige Kopplung effektiv reduzieren kann.

6. Im Hochgeschwindigkeits-PCB-Design hat die Serpentine-Linie keine sogenannte Filter- oder Interferenzfähigkeit und kann die Signalqualität nur reduzieren, so dass sie nur zum Timing-Matching verwendet wird und keinen anderen Zweck hat.

7. Manchmal kann die Spiralführung für das Wickeln in Betracht gezogen werden. Die Simulation zeigt, dass seine Wirkung besser ist als die normale Serpentinenführung.