Präzisions-Leiterplattenherstellung, Hochfrequenz-Leiterplatten, mehrschichtige Leiterplatten und Leiterplattenbestückung.
Leiterplattentechnisch

Leiterplattentechnisch - HF-Schnittstelle und HF-Schaltung für PCB Board Design

Leiterplattentechnisch

Leiterplattentechnisch - HF-Schnittstelle und HF-Schaltung für PCB Board Design

HF-Schnittstelle und HF-Schaltung für PCB Board Design

2021-10-29
View:437
Author:Downs

In PCB-Design, Viele Besonderheiten von HF-Schaltungen sind schwer in wenigen kurzen Sätzen zu erklären, noch können sie mit herkömmlicher Simulationssoftware analysiert werden, wie SPICE. Allerdings, Es gibt einige EDA-Software auf dem Markt, die komplexe Algorithmen wie Harmonic Balance haben, Schießmethode, etc., die Hochfrequenzschaltungen schnell und genau simulieren kann. Aber bevor Sie diese EDA-Software erlernen, Sie müssen zuerst die Eigenschaften von Hochfrequenzschaltungen verstehen, insbesondere die Bedeutung einiger richtiger Begriffe und physikalischer Phänomene, weil dies das Grundwissen der Hochfrequenztechnik ist.

HF-Schnittstelle

Der drahtlose Sender und Empfänger sind konzeptionell in zwei Teile unterteilt: Basisfrequenz und Hochfrequenz. Die Grundfrequenz umfasst den Frequenzbereich des Eingangssignals des Senders und den Frequenzbereich des Ausgangssignals des Empfängers. Die Bandbreite der Grundfrequenz bestimmt die fundamentale Geschwindigkeit, mit der Daten im System fließen können. Die Basisfrequenz wird verwendet, um die Zuverlässigkeit des Datenstroms zu verbessern und die vom Sender auf das Übertragungsmedium unter einer bestimmten Datenübertragungsrate auferlegte Last zu reduzieren. Daher sind viele Kenntnisse in der Signalverarbeitung erforderlich, wenn Sie eine grundlegende Frequenzschaltung auf einer Leiterplatte entwerfen. Die Hochfrequenzschaltung des Senders kann das bearbeitete Basisbandsignal in einen bestimmten Kanal umwandeln und hochumwandeln und dieses Signal in das Übertragungsmedium einspritzen. Im Gegenteil, der Hochfrequenzkreislauf des Empfängers kann das Signal vom Übertragungsmedium erhalten und die Frequenz auf die Basisfrequenz umwandeln und reduzieren.

Leiterplatte

Der Sender hat zwei Haupt- PCB-Designziele:

Die erste ist, dass sie eine bestimmte Menge an Energie abgeben müssen, während sie möglichst wenig Strom verbrauchen.

Die zweite ist, dass sie den normalen Betrieb von Transceivern in benachbarten Kanälen nicht stören können. Was den Empfänger betrifft, gibt es drei Hauptziele des PCB-Designs: Erstens müssen sie kleine Signale genau wiederherstellen;

Drittens müssen sie Störsignale außerhalb des gewünschten Kanals entfernen können; Schließlich müssen sie wie Sender sehr wenig Strom verbrauchen.

Kleines Erwartungssignal


Der Empfänger muss kleine Eingangssignale sehr empfindlich erfassen. Generell kann die Eingangsleistung des Empfängers bis zu 1 μV betragen. Die Empfindlichkeit des Empfängers wird durch das Rauschen seiner Eingangsschaltung begrenzt. Daher ist Rauschen eine wichtige Überlegung beim PCB-Design des Empfängers. Darüber hinaus ist die Fähigkeit, Geräusche mit Simulationswerkzeugen vorherzusagen, unabdingbar. Das empfangene Signal wird zuerst gefiltert, dann wird das Eingangssignal durch einen rauscharmen Verstärker (LNA) verstärkt. Verwenden Sie dann den ersten lokalen Oszillator (LO), um mit diesem Signal zu mischen, um dieses Signal in eine Zwischenfrequenz (IF) umzuwandeln. Die Geräuschleistung der Frontend-Schaltung hängt hauptsächlich von LNA, Mischer und LO ab. Obwohl die traditionelle SPICE-Rauschanalyse das Rauschen des LNA finden kann, ist sie für den Mischer und den LO nutzlos, da das Rauschen in diesen Blöcken durch das große LO-Signal stark beeinträchtigt wird.

Das kleine Eingangssignal erfordert eine große Verstärkungsfunktion des Empfängers, in der Regel ist eine Verstärkung von 120 dB erforderlich. Bei einer solchen hohen Verstärkung kann jedes Signal, das von der Ausgangsklemme zurück an die Eingangsklemme gekoppelt wird, Probleme verursachen. Der wichtige Grund für die Verwendung der Superheterodyne-Empfängerarchitektur ist, dass sie den Gain in mehreren Frequenzen verteilen kann, um die Wahrscheinlichkeit einer Kopplung zu verringern. Dadurch unterscheidet sich auch die Frequenz des ersten LO von der Frequenz des Eingangssignals, was verhindern kann, dass große Störsignale zu kleinen Eingangssignalen "kontaminiert" werden.

Aus verschiedenen Gründen kann in einigen drahtlosen Kommunikationssystemen eine direkte Umwandlung oder homodyne Architektur Superheterodyne Architektur ersetzen. In dieser Architektur wird das HF-Eingangssignal in einem einzigen Schritt direkt in die Grundfrequenz umgewandelt. Daher liegt der größte Teil der Verstärkung in der Grundfrequenz, und die Frequenz des LO und des Eingangssignals ist die gleiche. In diesem Fall muss der Einfluss einer kleinen Menge an Kopplung verstanden werden, und ein detailliertes Modell des "Streuungssignalpfades" muss erstellt werden, wie zum Beispiel: Kopplung durch das Substrat, Paketstifte und Bonddrähte (Bonddraht) zwischen der Kopplung und die Kopplung durch die Stromleitung.

Großes Störsignal

Der Empfänger muss sehr empfindlich auf kleine Signale reagieren, auch bei großen Störsignalen (Hindernissen). Diese Situation tritt auf, wenn versucht wird, ein schwaches oder langes Übertragungssignal zu empfangen, und ein leistungsstarker Sender in der Nähe sendet in einem benachbarten Kanal. Das Störsignal kann 60~70 dB größer als das erwartete Signal sein, und es kann in einer großen Menge der Abdeckung während der Eingangsstufe des Empfängers verwendet werden, oder der Empfänger kann übermäßiges Rauschen während der Eingangsstufe erzeugen, um den Empfang von normalen Signalen zu blockieren. Wenn der Empfänger während der Eingangsstufe von der Störquelle in einen nichtlinearen Bereich getrieben wird, treten die beiden oben genannten Probleme auf. Um diese Probleme zu vermeiden, muss die Vorderseite des Empfängers sehr linear sein.

Daher ist "Linearität" auch eine wichtige Überlegung beim Design eines Empfängers auf einer Leiterplatte. Da der Empfänger eine schmalbandige Schaltung ist, wird die Nichtlinearität durch Messung der "Intermodulationsverzerrung" gemessen. Dabei werden zwei Sinuswellen oder Kosinuswellen mit ähnlichen Frequenzen verwendet, die sich im Mittelband befinden, um das Eingangssignal anzutreiben und dann das Produkt seiner Intermodulation zu messen. Generell ist SPICE eine zeitaufwendige und kostenintensive Simulationssoftware, da sie viele Zyklen durchführen muss, um die erforderliche Frequenzauflösung zu erhalten, um die Verzerrung zu verstehen.

Leiterplatte angrenzend Kanalstörungen

Auch im Sender spielt Verzerrung eine wichtige Rolle. Die Nichtlinearität, die durch den Sender in der Ausgangsschaltung erzeugt wird, kann die Bandbreite des übertragenen Signals in benachbarten Kanälen verteilen. Dieses Phänomen wird als "spektrales Nachwachsen" bezeichnet. Bevor das Signal den Leistungsverstärker (PA) des Senders erreicht, ist seine Bandbreite begrenzt; Aber die "Intermodulationsverzerrung" in der PA wird dazu führen, dass die Bandbreite wieder zunimmt. Wird die Bandbreite zu stark erhöht, kann der Sender den Strombedarf seiner benachbarten Kanäle nicht erfüllen. Bei der Übertragung digital modulierter Signale ist es nämlich unmöglich, mit SPICE das weitere Wachstum des Spektrums vorherzusagen. Da es etwa 1000 digitale Symbole (Symbol) gibt, müssen Übertragungsvorgänge simuliert werden, um ein repräsentatives Spektrum zu erhalten, und müssen auch Hochfrequenzträger kombinieren, was SPICE Transientenanalyse unpraktisch macht.