Präzisions-Leiterplattenherstellung, Hochfrequenz-Leiterplatten, mehrschichtige Leiterplatten und Leiterplattenbestückung.
Leiterplattentechnisch

Leiterplattentechnisch - Multi-Power Layer Design

Leiterplattentechnisch

Leiterplattentechnisch - Multi-Power Layer Design

Multi-Power Layer Design

2021-09-20
View:728
Author:Frank

Multi-Power Layer Design4-Layer BoardEs gibt mehrere potenzielle Probleme mit dem 4-Layer Board Design. Zunächst einmal ist die traditionelle vierschichtige Platine mit einer Dicke von 62 mils, selbst wenn die Signalschicht auf der Außenschicht liegt und die Energie- und Masseschichten auf der Innenschicht sind, der Abstand zwischen der Leistungsschicht und der Bodenschicht ist immer noch zu groß. Die folgenden zwei Alternativen zu herkömmlichen 4-schichtigen Platinen. Beide Lösungen können die Leistung der EMI-Unterdrückung verbessern, eignen sich aber nur für Anwendungen, bei denen die Bauteildichte auf der Platine niedrig genug ist und genügend Fläche um die Komponenten herum vorhanden ist (Platzieren Sie die erforderliche Stromversorgung Kupferschicht). Die erste ist die bevorzugte Lösung. Die äußeren Schichten der Leiterplatte sind alle Masseschichten, und die mittleren beiden Schichten sind Signal-/Leistungsschichten. Die Stromversorgung auf der Signalschicht wird mit einer breiten Linie geführt, die die Wegimpedanz des Netzteilstroms niedrig machen kann, und die Impedanz des Signalmikrostreifenpfads ist auch niedrig. Aus Sicht der EMI-Steuerung ist dies die beste 4-lagige PCB-Struktur auf dem Markt. Im zweiten Schema verwendet die äußere Schicht Strom und Masse, und die mittleren beiden Schichten verwenden Signale. Verglichen mit der traditionellen 4-Schicht-Platte ist die Verbesserung kleiner, und die Zwischenschicht-Impedanz ist so schlecht wie die traditionelle 4-Schicht-Platte.

Leiterplatte

Wenn Sie die Leiterbahnimpedanz steuern möchten, muss das obige Stapelschema sehr vorsichtig sein, um die Leiterbahnen unter den Strom- und Erdkupferinseln anzuordnen. Darüber hinaus sollten die Kupferinseln auf der Stromversorgung oder Erdungsschicht so weit wie möglich miteinander verbunden sein, um Gleich- und Niederfrequenz-Konnektivität zu gewährleisten.

6-Lagen-BoardWenn die Dichte der Komponenten auf einer 4-Lagen-Platine relativ hoch ist, ist eine 6-Lagen-Platine am besten. Einige Stapelschemata im 6-Lagen-Board-Design sind jedoch nicht gut genug, um das elektromagnetische Feld abzuschirmen und haben wenig Einfluss auf die Reduzierung des transienten Signals des Leistungsbusses. Im Folgenden werden zwei Beispiele erläutert. Im ersten Beispiel werden Stromversorgung und Erdung auf der zweiten und fünften Schicht platziert. Aufgrund der hohen Kupferimpedanz des Netzteils ist es sehr ungünstig, die Gleichtakt-EMI-Strahlung zu steuern. Aus Sicht der Signalimpedanzsteuerung ist diese Methode jedoch sehr korrekt. Im zweiten Beispiel werden Stromversorgung und Erdung auf der dritten und vierten Schicht platziert. Dieses Design löst das Problem der Stromversorgung Kupferimpedanz. Aufgrund der schlechten elektromagnetischen Abschirmleistung der ersten und sechsten Schicht wird die Differenzmodus-EMI erhöht. Wenn die Anzahl der Signalleitungen auf den beiden äußeren Schichten am wenigsten ist und die Spurenlänge sehr kurz ist (kürzer als 1/20 der Wellenlänge der höchsten Oberschwingung des Signals), kann dieser Entwurf das Differenzmodus-EMI-Problem lösen. Füllen Sie den Bereich ohne Komponenten und Spuren auf der äußeren Schicht mit Kupfer und mahlen Sie den kupferplattierten Bereich (jede 1/20 Wellenlänge als Intervall), der besonders gut zur Unterdrückung differentieller Mode EMI ist. Wie bereits erwähnt, ist es notwendig, den Kupferbereich an mehreren Punkten mit der inneren Masseebene zu verbinden. Das allgemeine Hochleistungs-6-Lagen-Board-Design weist im Allgemeinen die erste und sechste Schicht als Bodenschichten auf, und die dritte und vierte Schicht werden für Energie und Boden verwendet. Da sich in der Mitte zwischen der Leistungsschicht und der Masseschicht zwei doppelte Mikrostreifen-Signalleitungsschichten befinden, ist die EMI-Unterdrückungsfähigkeit hervorragend. Der Nachteil dieser Konstruktion ist, dass es nur zwei Routing-Layer gibt. Wie bereits erwähnt, wenn die äußeren Leiterbahnen kurz sind und Kupfer im spurlosen Bereich verlegt wird, kann die gleiche Stapelung auch mit einer traditionellen 6-Lagenplatte erreicht werden. Ein anderes 6-schichtiges Brettlayout ist Signal, Masse, Signal, Energie, Masse, Signal, das die Umgebung realisieren kann, die für fortschrittliches Signalintegritätsdesign erforderlich ist. Die Signalschicht grenzt an die Masseschicht, und die Leistungsschicht und die Masseschicht sind gekoppelt. Offensichtlich ist der Nachteil das unausgewogene Stapeln von Schichten. Die Lösung des Problems besteht darin, alle leeren Bereiche der dritten Schicht mit Kupfer zu füllen. Nachdem das Kupfer gefüllt ist, wenn die Kupferdichte der dritten Schicht nahe der Leistungsschicht oder der Masseschicht liegt, kann diese Platine nicht streng als strukturell ausgeglichene Leiterplatte gezählt werden. Der kupfergefüllte Bereich muss an Strom oder Masse angeschlossen werden. Der Abstand zwischen den Verbindungsdurchführungen ist immer noch 1/20 Wellenlänge, und es ist möglicherweise nicht notwendig, überall anzuschließen, aber es sollte unter idealen Bedingungen angeschlossen werden.

Da die isolierende Isolationsschicht zwischen den Mehrschichtplatinen sehr dünn ist, ist die Impedanz zwischen den 10- oder 12-Lagen der Leiterplatte sehr gering. Solange es kein Problem mit der Schichtung und Stapelung gibt, kann eine ausgezeichnete Signalintegrität erwartet werden. Es ist schwieriger, 12-Lagen-Platten mit einer Stärke von 62mil herzustellen, und es gibt nicht viele Hersteller, die 12-Lagen-Platten verarbeiten können. Da es immer eine isolierende Schicht zwischen der Signalschicht und der Schleifenschicht gibt, ist die Lösung, die mittleren 6-Lagen zur Leitung der Signalleitungen in einem 10-Lagen-Board-Design zuzuweisen, nicht die beste. Darüber hinaus ist es wichtig, die Signalschicht neben der Schleifenschicht zu machen, das heißt, das Board Layout ist Signal, Masse, Signal, Signal, Energie, Masse, Signal, Signal, Masse und Signal. Dieses Design bietet einen guten Weg für den Signalstrom und seinen Schleifenstrom. Die richtige Verdrahtungsstrategie besteht darin, die Drähte in X-Richtung auf der ersten Schicht, die Y-Richtungen auf der dritten Schicht und die X-Richtungen auf der vierten Schicht usw. Wenn man sich das Routing intuitiv ansieht, sind die erste Schicht 1 und die dritte Schicht ein Paar von Schichtkombinationen, die vierte und siebte Schicht sind ein Paar von Schichtkombinationen und die achte und zehnte Schicht sind das letzte Paar von Schichtkombinationen. Wenn es notwendig ist, die Routingrichtung zu ändern, sollte die Signalleitung auf der ersten Schicht das "Via" verwenden, um die dritte Schicht zu erreichen und dann die Richtung zu ändern. In der Tat kann dies nicht immer möglich sein, aber als Designkonzept muss es so weit wie möglich befolgt werden. Wenn sich die Signalleitungsrichtung ändert, sollte sie von der achten und zehnten Schicht oder von der vierten zur siebten Schicht durch Durchkontaktierungen gehen. Diese Verkabelung gewährleistet die engste Kopplung zwischen dem Vorwärtsweg des Signals und der Schleife. Wenn zum Beispiel das Signal auf der ersten Schicht geroutet wird und die Schleife auf der zweiten Schicht und nur auf der zweiten Schicht geroutet wird, dann wird das Signal auf der ersten Schicht durch das "via" auf die dritte Schicht übertragen. Die Schleife befindet sich immer noch auf der zweiten Schicht, um die Eigenschaften niedriger Induktivität, großer Kapazität und guter elektromagnetischer Abschirmleistung beizubehalten. Was ist, wenn die eigentliche Verkabelung nicht so ist? Beispielsweise führt die Signalleitung auf der ersten Schicht durch das Durchgangsloch zur zehnten Schicht. Zu diesem Zeitpunkt muss das Schleifensignal die Masseebene von der neunten Schicht finden, und der Schleifenstrom muss die nächste Masse über (wie den Massepfen eines Widerstands oder Kondensators) finden. Wenn es eine solche Via in der Nähe gibt, haben Sie wirklich Glück. Wenn kein solches Schließen-Durchgangsloch verfügbar ist, wird die Induktivität größer, die Kapazität wird reduziert und die EMI wird definitiv steigen. Wenn die Signalleitung das aktuelle Paar Verdrahtungsschichten durch Durchkontaktierungen zu anderen Verdrahtungsschichten verlassen muss, sollten Masseverbindungen in der Nähe der Durchkontaktierungen platziert werden, damit das Schleifensignal reibungslos zur richtigen Erdungsschicht zurückkehren kann. Bei der geschichteten Kombination der vierten und siebten Schicht kehrt die Signalschleife von der Leistungsschicht oder der Masseschicht (d. h. der fünften oder sechsten Schicht) zurück, da die kapazitive Kopplung zwischen der Leistungsschicht und der Masseschicht gut ist und das Signal leicht zu übertragen ist.

Wenn zwei Leistungsschichten derselben Spannungsquelle große Ströme ausgeben müssen, sollte die Leiterplatte in zwei Sätze von Leistungsschichten und Masseschichten ausgelegt werden. In diesem Fall wird zwischen jedem Paar Strom- und Bodenschichten eine isolierende Schicht gelegt. Auf diese Weise erhalten wir die beiden Paare von Leistungsbusstäben mit gleichen Impedanzen, die den erwarteten Strom teilen. Wenn das Stapeln der Leistungsschichten dazu führt, dass die Impedanz ungleich ist, wird der Shunt nicht einheitlich sein, die transiente Spannung wird viel größer sein, und das EMI wird stark zunehmen. Sind mehrere Versorgungsspannungen mit unterschiedlichen Werten auf der Leiterplatte vorhanden, sind entsprechend mehrere Versorgungsschichten erforderlich. Denken Sie daran, ihre eigenen gekoppelten Netzteile und Erdungsschichten für verschiedene Netzteile zu erstellen. Beachten Sie in den beiden oben genannten Fällen bei der Bestimmung der Position der gekoppelten Leistungsschicht und der Masseschicht auf der Leiterplatte die Anforderungen des Herstellers an die ausgewogene Struktur.