電力バスはEMIの問題の一つである. EMI問題を解決する多くの方法があります. 最近のEMI抑制法を含む:EMI抑制被覆の使用, 適切なEMI抑制部品の選択, EMIシミュレーション設計. 本稿では、電力バスの問題について議論する 多層PCB
パワーバス
ICの電源ピンの近くに適切な容量のコンデンサを適切に配置することにより、IC出力電圧がより速くジャンプすることができる。だがここで問題は終わらない。コンデンサの限られた周波数応答のために、これはコンデンサが完全な周波数帯において、きれいにIC出力を駆動するのに必要な高調波電力を生成することができない。加えて、パワーバスバーに形成された過渡電圧は、デカップリング経路のインダクタにわたって電圧降下を形成する。これらの過渡電圧は、主共通モードEMI干渉源である。どのようにこれらの問題を解決する必要がありますか?
我々の回路基板上のICに関しては、IC周辺の電力層は、高周波エネルギーをクリーン出力のために提供するディスクリートキャパシタによって漏洩されるエネルギーの一部を収集することができる優れた高周波コンデンサとみなすことができる。また、良好なパワー層のインダクタンスは小さいので、インダクタンスによって合成された過渡信号も小さく、コモンモードEMIを低減することができる。
もちろん, パワー層とICパワーピンとの接続は、できるだけ短くなければならない, デジタル信号の立ち上がりエッジが速くなっているので, そして、それを直接に接続することは PCBパッド ICパワーピンがどこにあるか. これは別途議論する必要がある。
コモンモードEMIを制御するために、パワープレーンはデカップリングを助けなければならず、十分に低いインダクタンスを有する。このパワープレーンは、パワープレーンのよく設計されたペアでなければなりません。誰かが尋ねるかもしれない、どのように良い良いですか?この問題に対する答えは、電源の供給、層間の材料、および動作周波数(すなわち、IC上昇時間の関数)に依存する。一般的に、パワー層の間隔は6 milであり、層間はFR 4材料であり、平方インチ当たりのパワー層の等価キャパシタンスは約75 pFである。明らかに、層間隔が小さいほど、キャパシタンスが大きくなる。
100〜300 psの立ち上がり時間のデバイスは多くないが、現在のIC開発速度によれば、100〜300 psの範囲の立ち上がり時間の高いデバイスが占める割合が高い。100〜300 psの立ち上がり時間を持つ回路では、3 mil層間隔は、ほとんどの用途にはもはや適しない。その際,1 mil以下の層間隔で積層技術を使用し,fr 4誘電体材料を高誘電率材料に置き換える必要があった。現在、100〜300 psの立ち上がり時間回路の設計要件を満たすことができる。
新しい材料と新しい方法が将来使用されるかもしれませんが, 今日の一般的な1, 3~6ミルの層間隔とFR 4誘電体材料, 通常、ハイエンド高調波を処理し、過渡信号を十分低くすることができる, 即ち, コモンモードEMIは、非常に低い. The PCB積層スタッキング設計 本条で与えられた例は、3〜。