1 .経由
viaは重要なコンポーネントの一つです 多層PCB, そして、掘削のコストは通常30 %から40 %を占めている PCB製造 コスト. 簡単に言えば, PCB上のすべての穴をビアと呼ぶことができる. 機能の観点から, ビアは、2つのカテゴリーに分けられることができます:1つは、層の間の電気接続のために使われます;もう一方は、装置を固定または位置決めするために使用される. 過程で, これらのビアは一般に3つのカテゴリーに分けられる, ブラインドビアス, 埋没ビアとビア. ブラインドビアは、プリント回路基板の上面および底面に位置し、ある深さを有する. これらは、表面線と下の内側の線を接続するために使用されます. The depth of the hole usually does not exceed a certain ratio (aperture). 埋め込みホールは、プリント回路基板の内側層に位置する接続孔を指す, これは回路基板の表面には及ばない. 上記2つのタイプのホールは、回路基板100の内側層に位置する, そして、積層前にスルーホール形成プロセスによって完成する, そして、ビアの形成の間、いくつかの内部層が重なってもよい. 番目のタイプは貫通穴と呼ばれます, これは、回路基板全体を貫通し、内部配線用または位置決め用穴を取り付ける部品として使用することができる. スルーホールは、プロセスで実装しやすく、コストが低いので, プリント回路基板のほとんどは、他の2種類のスルーホールの代わりに使用する. 次のバイアホール, 別途, ビアホールと見なされる.
設計視点から, ビアは主に2つの部分から成る, 一つは中央のドリル穴です, もう一方は、ドリル穴の周りのパッド領域です, 下記の図に示すように. これらの2つの部品のサイズは、ビアのサイズを決定する. 明らかに, 高速で, 高密度PCB設計, 設計者は常にバイアホールが小さいことを望みます, より良い, より多くの配線スペースがボードに残ることができるように. 加えて, ビアホールは小さい, それ自身の寄生容量. より小さい, より高速な回路に適している. しかし, ホールサイズの縮小もコストの増加をもたらす, そして、ビアのサイズは無期限に減少できない. それは穴加工やめっきなどのプロセス技術によって制限される, 穴が長くなるほど穴が長くなる, 簡単に中央位置から逸脱することです穴の深さが穴の直径の6倍を超えるとき, 穴壁は銅で均一にめっきされることが保証されない. 例えば, the thickness (through hole depth) of a normal 6-layer PCBボード 約50ミルです, したがって、最小掘削直径は PCBメーカー 提供することができますのみ.
第二に、ビアの寄生容量
ビア自身は接地に寄生容量を有する。ビアのグランド層上の分離孔の直径がD 2であることが知られている場合、ビアパッドの直径はD 1であり、PCB基板の厚さはTであり、基板基板の比誘電率は約5 %であり、ビアの寄生容量は約:
C = 1.41は、TD 1 /(D 2 - D 1)です
回路のビアの寄生容量の主な効果は、信号の立ち上がり時間を延長し、回路の速度を低下させることである。例えば、50 milの厚さのPCBでは、内径10 mil、パッド径20ミルのビアを用い、パッドとグランド銅領域との距離を32 milとすれば、上記の式を用いてビアを近似することができ、寄生容量はC=1.41×4である。4 x 0050 x 0020/(0.032−0.020)=0.517 pF、容量のこの部分による立ち上がり時間の変化は、T 10−90=2.2 C(Z 0/2)=2.2×0である。517 x(55 / 2)= 31.28 ps。これらの値から分かるように、1つのビアの寄生キャパシタンスに起因する立ち上がり遅延の影響は明らかではないが、ビアが層間に切り替わるためにトレースに複数回使用される場合、設計者は慎重に考慮すべきである。
第三に、ビアの寄生インダクタンス
同様に、ビアの寄生容量と共に寄生インダクタンスが存在する。高速デジタル回路の設計において、ビアの寄生インダクタンスに起因する害は、寄生容量の影響よりもしばしば大きい。その寄生直列インダクタンスはバイパスコンデンサの貢献を弱めて、全体の電力システムのフィルタリング効果を弱めます。単にビアの寄生インダクタンスを以下の式で計算することができる。
Lはビアのインダクタンス、Hはビアの長さ、Dは中心孔の直径である。ビアの直径はインダクタンスに小さい影響を与え、ビアの長さはインダクタンスに最大の影響を与えることが式から分かる。なお、上記の例を用いて、ビアのインダクタンスをL=5.08 x 0と算出することができる。050[Ln(4×0.050/0.010)+1]=1.015 nH。信号の立ち上がり時間が1 nsであれば等価インピーダンスとなる。このようなインピーダンスは、高周波電流が通過すると無視されることはない。バイパスコンデンサは、電源プレーンと接地面とを接続するときに2つのビアを通過する必要があることに注意しなければならない。
フォース, デザインによって 高速PCB
ビアの寄生特性の上記の分析を通して, 我々は、デザインのそれを見ることができます 高速PCBs, the seemingly simple process is
Holes often also bring great negative effects to circuit design. ビアの寄生効果による悪影響を低減するために, 以下のようにします。
コストと信号品質を考慮して、サイズを通して妥当なサイズを選んでください。例えば、6−10層のメモリモジュールのPCB設計の場合、10/20ミル(ドリル/パッド)ビアを使用する方がよい。いくつかの高密度小型ボードの場合は、8 / 18ミルを使用することもできます。ホール.現在の技術条件下では、より小さなバイアを使用することは困難である。電源または接地のために、あなたはインピーダンスを減らすためにより大きなサイズを使うことを考慮することができます。
2. 上で議論した2つの公式は、描かれることができます. より薄いPCBの使用は、2つのタイプのビアを減らすのに有益である.
健康パラメータ.
3. 上の信号トレースの層を変更しないようにしてください PCBボード, 即ち, 不要なバイアを使用しないようにしてください.
4 .電源ピンとグランドピンを近くでドリルして、インダクタンスを大きくするので、ビアとピンとの間のリード線はできるだけ短くするべきです。同時に、電源および接地リード線は、インピーダンスを減らすためにできるだけ厚くなければならない。
信号層のビアの近くにいくつかの接地ビアを配置して、信号に最も近いループを提供する。PCBボード上に多数の冗長グランドビアを配置することも可能である。もちろん、デザインは柔軟である必要があります。先に説明したビアモデルは、各層にパッドがある場合である。時々、いくつかの層のパッドを減らすか、あるいは取り除くことさえできます。特にビアの密度が非常に高いとき、それは銅層のループを分離する壊れた溝の形成につながることができる。この問題を解決するために、ビアの位置を移動させることに加えて、ビアを銅層に配置することも考えられる。パッドサイズを小さくする。