Präzisions-Leiterplattenherstellung, Hochfrequenz-Leiterplatten, mehrschichtige Leiterplatten und Leiterplattenbestückung.
Leiterplattentechnisch

Leiterplattentechnisch - Die wichtigsten Punkte des Leiterplattendesigns in der Leiterplattenfabrik

Leiterplattentechnisch

Leiterplattentechnisch - Die wichtigsten Punkte des Leiterplattendesigns in der Leiterplattenfabrik

Die wichtigsten Punkte des Leiterplattendesigns in der Leiterplattenfabrik

2021-11-01
View:413
Author:Downs

In den letzten zehn Jahren, Chinas Leiterplatte (PCB) manufacturing industry has developed rapidly, und sein Gesamtoutputwert und Gesamtoutput haben beide den ersten Platz in der Welt belegt. Aufgrund der rasanten Entwicklung elektronischer Produkte, Preiskriege haben die Struktur der Lieferkette verändert. China hat sowohl industrielle Distribution, Kosten- und Marktvorteile, und ist zum wichtigsten der Welt geworden Leiterplatte Produktionsbasis.

Leiterplatten haben sich von einlagigen zu doppelseitigen Leiterplatten, Mehrschichtplatten und flexiblen Leiterplatten entwickelt und entwickeln sich weiterhin in Richtung hoher Präzision, hoher Dichte und hoher Zuverlässigkeit. Kontinuierlich schrumpfendes Volumen, Kostensenkung und Leistungssteigerung haben es Leiterplatten ermöglicht, auch in Zukunft eine starke Vitalität bei der Entwicklung elektronischer Produkte zu bewahren.

Der zukünftige Entwicklungstrend der Leiterplattenherstellungstechnologie besteht darin, sich in Richtung hoher Dichte, hoher Präzision, feiner Öffnung, feiner Draht, kleiner Neigung, hoher Zuverlässigkeit, Mehrschichtübertragung, Hochgeschwindigkeitsübertragung, geringem Gewicht und dünner Leistung zu entwickeln.

Im Folgenden finden Sie eine Einführung in die fünf Kernpunkte der Leiterplattenfabrik Design für Leiterplatten

1. Es muss eine vernünftige Richtung geben

Leiterplatte

Wie Eingang/Ausgang, AC/DC, starkes/schwaches Signal, Hochfrequenz/Niederfrequenz, Hochspannung/Niederspannung, etc. Ihre Richtung sollte linear (oder getrennt) sein und darf nicht miteinander verschmelzen. Sie soll gegenseitige Einmischung verhindern. Der beste Trend liegt in einer geraden Linie, ist aber im Allgemeinen nicht einfach zu erreichen. Der ungünstigste Trend ist ein Kreis. Glücklicherweise kann die Isolation verbessert werden. Für DC, kleines Signal, Niederspannungs-PCB-Design-Anforderungen können niedriger sein. Also ist "vernünftig" relativ.

2. Wählen Sie einen guten Erdungspunkt: Der Erdungspunkt ist oft der wichtigste

Ich weiß nicht, wie viele Ingenieure und Techniker über den kleinen Erdungspunkt gesprochen haben, der seine Bedeutung zeigt. Unter normalen Umständen ist eine gemeinsame Masse erforderlich, wie zum Beispiel: mehrere Erdungskabel des Vorwärtsverstärkers sollten zusammengeführt und dann mit der Haupterde verbunden werden usw. In Wirklichkeit ist es schwierig, dies vollständig aufgrund verschiedener Einschränkungen zu erreichen, aber wir sollten unser Bestes versuchen, es zu befolgen. Dieses Problem ist in der Praxis recht flexibel. Jeder hat seine eigenen Lösungen. Es ist leicht zu verstehen, ob sie es für eine bestimmte Leiterplatte erklären können.

3. Angemessene Anordnung des Leistungsfilters/der Entkopplungskondensatoren

Grundsätzlich sind im Schaltplan nur eine Anzahl von Leistungsfilter/Entkopplungskondensatoren gezeichnet, jedoch nicht angegeben, wo sie angeschlossen werden sollen. Tatsächlich sind diese Kondensatoren für Schaltgeräte (Gate-Schaltungen) oder andere Komponenten eingerichtet, die gefiltert/entkoppelt werden müssen. Diese Kondensatoren sollten so nah wie möglich an diesen Komponenten platziert werden. Wenn sie zu weit weg sind, haben sie keine Wirkung. Interessanterweise wird das Problem der Erdungspunkte weniger offensichtlich, wenn die Netzfilter/Entkopplungskondensatoren richtig angeordnet sind.

4. Der Durchmesser der Linie erfordert die entsprechende Größe des vergrabenen Lochs durch Loch

Wenn möglich, sollten breite Linien niemals dünn sein; Hochspannungs- und Hochfrequenzleitungen sollten rund und rutschig sein, ohne scharfe Fasen, und Ecken sollten nicht rechtwinklig sein. Der Erdungsdraht sollte so breit wie möglich sein, und es ist am besten, eine große Fläche von Kupfer zu verwenden, was das Problem der Erdungspunkte erheblich verbessern kann. Die Größe des Pads oder Durchgangs ist zu klein, oder die Größe des Pads und die Lochgröße sind nicht richtig aufeinander abgestimmt. Ersteres ist ungünstig für manuelle Bohrungen und letzteres ist ungünstig für CNC-Bohrungen. Es ist einfach, das Pad in eine "c"-Form zu bohren, aber das Pad abzubohren. Der Draht ist zu dünn, und die große Fläche des nicht verdrahteten Bereichs ist nicht mit Kupfer versehen, was leicht ungleichmäßige Korrosion verursachen kann. Das heißt, wenn der nicht verdrahtete Bereich korrodiert ist, ist der dünne Draht wahrscheinlich überkorrodiert, oder es kann scheinen, gebrochen oder vollständig gebrochen zu sein. Daher besteht die Rolle des Setzens von Kupfer nicht nur darin, den Erdungsdraht-Bereich und die Interferenzsicherheit zu erhöhen

5. Anzahl der Durchkontaktierungen, Lötstellen und Leitungsdichte

Einige Probleme sind in der Anfangsphase der Schaltungsproduktion nicht leicht zu finden, und sie neigen dazu, im späteren Stadium zu erscheinen. Zum Beispiel, es gibt zu viele Leiterplattenführungen, und die geringste Nachlässigkeit im Kupfersinkenprozess wird versteckte Gefahren begraben. Daher, Das Design sollte das Drahtloch minimieren. Die Dichte paralleler Linien in derselben Richtung ist zu groß, und es ist einfach, beim Schweißen zusammenzufügen. Daher, Die Liniendichte sollte entsprechend dem Niveau des Schweißprozesses bestimmt werden. Der Abstand der Lötstellen ist zu klein, das für das manuelle Schweißen nicht förderlich ist, und die Schweißqualität kann nur durch Verringerung der Arbeitseffizienz gelöst werden. Ansonsten, versteckte Gefahren bleiben bestehen. Daher, Der Mindestabstand der Lötstellen sollte durch umfassende Berücksichtigung der Qualität und Arbeitseffizienz des Schweißpersonals bestimmt werden.