Präzisions-Leiterplattenherstellung, Hochfrequenz-Leiterplatten, mehrschichtige Leiterplatten und Leiterplattenbestückung.
PCB-Neuigkeiten

PCB-Neuigkeiten - Leiterplattenverschlüsse beeinflussen die Signalübertragung

PCB-Neuigkeiten

PCB-Neuigkeiten - Leiterplattenverschlüsse beeinflussen die Signalübertragung

Leiterplattenverschlüsse beeinflussen die Signalübertragung

2021-10-23
View:357
Author:Aure

Leiterplatte vias affect signal transmission


Via is one of the important components of Mehrschichtige Leiterplatten, und die Kosten des Bohrens machen normalerweise 30% bis 40% der Kosten der Leiterplattenherstellung aus. Einfach ausgedrückt, Jedes Loch auf der Leiterplatte kann ein via aufgerufen werden.


Eins, parasitic capacitance of vias

The via itself has a parasitic capacitance to the ground. Wenn bekannt ist, dass der Durchmesser des Isolationslochs auf der Bodenschicht des Durchgangs D2 ist, der Durchmesser des Durchgangspads ist D1, die Dicke der Leiterplatte ist T, und die dielektrische Konstante des Plattensubstrats ist ε, Die Größe der parasitären Kapazität des Durchgangs beträgt ungefähr: C=1.41εTD1/(D2-D1) The parasitic capacitance of the via will cause the circuit to prolong the rise time of the signal and reduce the speed of the circuit. Zum Beispiel, für eine Leiterplatte mit einer Dicke von 50Mil, wenn ein Durchgang mit einem Innendurchmesser von 10Mil und einem Paddurchmesser von 20Mil verwendet wird, und der Abstand zwischen dem Pad und dem Boden Kupferbereich ist 32Mil, Die parasitäre Kapazität ist ungefähr: C=1.41x4.4x0.050x0.020/(0.032-0.020)=0.517pF, Die Anstiegszeit, die durch diesen Teil der Kapazität verursacht wird, ist: T10-90=2.2C(Z0/2)=2.2 x0.517x(55/2)=31.28ps. Aus diesen Werten ist ersichtlich, dass der Effekt der Anstiegsverzögerung, die durch die parasitäre Kapazität eines einzelnen Durchgangs verursacht wird, nicht offensichtlich ist., wenn das Via mehrfach in der Trace verwendet wird, um zwischen Ebenen zu wechseln, der Designer sollte immer noch sorgfältig überlegen.



Leiterplatte



2. Parasitische Induktivität von Vias

Ebenso gibt es parasitäre Induktivitäten zusammen mit der parasitären Kapazität der Vias. Bei der Konstruktion von Hochgeschwindigkeits-Digitalschaltungen verursacht die parasitäre Induktivität der Durchkontaktierungen oft mehr Schaden als die parasitäre Kapazität. Seine parasitäre Reiheninduktivität schwächt den Beitrag des Bypass-Kondensators und schwächt die Filterwirkung des gesamten Stromsystems. Wir können einfach die ungefähre parasitäre Induktivität eines Durchgangs mit der folgenden Formel berechnen: L=5,08h[ln(4h/d)+1] wobei L die Induktivität des Durchgangs bezieht, h die Länge des Durchgangs und d die Mitte ist Der Durchmesser des Lochs. Aus der Formel ist ersichtlich, dass der Durchmesser des Durchgangs einen geringen Einfluss auf die Induktivität hat und die Länge des Durchgangs den größten Einfluss auf die Induktivität hat. Mit Hilfe des obigen Beispiels kann die Induktivität des Durchgangs wie folgt berechnet werden: L=5.08x0.050[ln(4x0.050/0.010)+1]=1.015nH. Wenn die Anstiegszeit des Signals 1ns ist, dann ist seine äquivalente Impedanz: XL=πL/T10-90=3.19Ω. Eine solche Impedanz kann nicht mehr ignoriert werden, wenn hochfrequente Ströme passieren. Besondere Aufmerksamkeit sollte darauf gelegt werden, dass der Bypass-Kondensator beim Verbinden der Leistungsebene und der Masseebene zwei Durchgänge durchlaufen muss, damit die parasitäre Induktivität der Durchgänge exponentiell zunimmt.

3. Über Design in Hochgeschwindigkeits-PCB

Durch die obige Analyse der parasitären Eigenschaften von Durchkontaktierungen können wir sehen, dass im Hochgeschwindigkeits-PCB-Design scheinbar einfache Durchkontaktierungen oft große negative Auswirkungen auf das Schaltungsdesign haben. Um die negativen Auswirkungen, die durch die parasitären Effekte der Vias verursacht werden, zu reduzieren, kann im Design Folgendes getan werden:

1. Wählen Sie aus den beiden Aspekten der Kosten- und Signalqualität eine angemessene Größe über. Zum Beispiel ist es für das 6-10-Schicht-Speichermodul PCB-Design besser, 10/20Mil (gebohrt/pad) Durchgänge zu verwenden. Für einige High-Density Small-Size-Boards kannst du auch 8/18Mil verwenden. Loch. Unter aktuellen technischen Bedingungen ist es schwierig, kleinere Durchkontaktierungen zu verwenden. Bei Strom- oder Masseverbindungen können Sie erwägen, eine größere Größe zu verwenden, um die Impedanz zu reduzieren.

2. Die beiden oben diskutierten Formeln können geschlossen werden, dass die Verwendung einer dünneren Leiterplatte vorteilhaft ist, um die beiden parasitären Parameter des Durchgangs zu reduzieren.

3. Die Energie- und Massepunkte sollten in der Nähe gebohrt werden, und die Leitung zwischen dem Durchgang und dem Stift sollte so kurz wie möglich sein, da sie die Induktivität erhöhen. Gleichzeitig sollten die Strom- und Masseleitungen so dick wie möglich sein, um die Impedanz zu reduzieren.

4. Versuchen Sie, die Schichten der Signalspuren auf der Leiterplatte nicht zu ändern, das heißt, versuchen Sie, keine unnötigen Durchkontaktierungen zu verwenden.

5. Platzieren Sie einige geerdete Durchkontaktierungen in der Nähe der Durchkontaktierungen des Signalschichtwechslers, um die nächste Schleife für das Signal bereitzustellen. Es ist sogar möglich, eine große Anzahl redundanter Masseverbindungen auf dem Leiterplatte. Natürlich, das Design muss flexibel sein. Das zuvor besprochene Via-Modell ist der Fall, wenn es Pads auf jeder Schicht gibt. Manchmal, Wir können die Pads einiger Schichten reduzieren oder sogar entfernen. Besonders wenn die Dichte der Durchkontaktierungen sehr hoch ist, Es kann zur Bildung einer Bruchnut führen, die die Schleife in der Kupferschicht trennt. Um dieses Problem zu lösen, zusätzlich zur Verschiebung der Position des Via, Wir können auch erwägen, das Via auf der Kupferschicht zu platzieren. Die Padgröße wird reduziert.