Präzisions-Leiterplattenherstellung, Hochfrequenz-Leiterplatten, mehrschichtige Leiterplatten und Leiterplattenbestückung.
Leiterplattentechnisch

Leiterplattentechnisch - Techniken zum Stapeln von Leiterplatten zur Steuerung von EMI-Strahlung

Leiterplattentechnisch

Leiterplattentechnisch - Techniken zum Stapeln von Leiterplatten zur Steuerung von EMI-Strahlung

Techniken zum Stapeln von Leiterplatten zur Steuerung von EMI-Strahlung

2021-11-08
View:476
Author:Downs

Es gibt viele Möglichkeiten, EMI-Probleme zu lösen. Moderne EMI-Unterdrückungsmethoden umfassen: Verwendung von EMI-Unterdrückungsbeschichtungen, Auswahl geeigneter EMI-Unterdrückungsteile, und EMI Simulation Design. Ausgehend von den grundlegendsten Leiterplattenlayout, Dieser Artikel diskutiert die Rolle und Designtechniken des Schichtstapelns von Leiterplatten bei der Steuerung von EMI-Strahlung.

Strombus

Die richtige Platzierung von Kondensatoren mit entsprechender Kapazität in der Nähe der Stromversorgungspins des IC kann die IC-Ausgangsspannung schneller springen lassen. Hier endet das Problem jedoch nicht. Aufgrund des begrenzten Frequenzgangs des Kondensators kann der Kondensator nicht die Oberschwingungsleistung erzeugen, die erforderlich ist, um den IC-Ausgang sauber im vollen Frequenzband anzutreiben. Darüber hinaus bildet die auf dem Leistungsbus gebildete transiente Spannung einen Spannungsabfall über die Induktivität des Entkopplungspfades, und diese transienten Spannungen sind die wichtigsten Gleichtakt-EMI-Störquellen. Wie sollen wir diese Probleme lösen?

Was den IC auf unserer Leiterplatte betrifft, kann die Leistungsschicht um den IC als ausgezeichneter Hochfrequenzkondensator angesehen werden, der den Teil der Energie sammeln kann, die durch den diskreten Kondensator austritt, der Hochfrequenzenergie für saubere Ausgabe bereitstellt. Darüber hinaus sollte die Induktivität einer guten Leistungsschicht klein sein, so dass das transiente Signal, das durch die Induktivität synthetisiert wird, auch klein ist, wodurch Gleichtakt-EMI reduziert wird. Natürlich muss die Verbindung zwischen der Leistungsschicht und dem IC-Power-Pin so kurz wie möglich sein, da die steigende Kante des digitalen Signals immer schneller wird, und es ist am besten, es direkt mit dem Pad zu verbinden, auf dem sich der IC-Power-Pin befindet. Das muss gesondert diskutiert werden. Um Gleichtakt-EMI zu steuern, muss die Leistungsebene zur Entkopplung beitragen und eine ausreichend niedrige Induktivität aufweisen. Diese Leistungsebene muss ein gut entworfenes Paar von Leistungsebenen sein. Jemand mag fragen, wie gut ist gut? Die Antwort auf die Frage hängt von der Schichtung der Stromversorgung, den Materialien zwischen den Schichten und der Betriebsfrequenz (d.h. einer Funktion der Anstiegszeit des IC) ab.

Leiterplatte

Allgemein, der Abstand der Leistungsschicht beträgt 6mil, und die Zwischenschicht ist FR4 Material, Die äquivalente Kapazität der Leistungsschicht pro Quadratzoll beträgt etwa 75pF.

Offensichtlich, je kleiner der Ebenenabstand, je größer die Kapazität. Es gibt nicht viele Geräte mit einer Anstiegszeit von 100 bis 300 ps, aber entsprechend der aktuellen IC Entwicklungsgeschwindigkeit, Geräte mit einer Anstiegszeit im Bereich von 100 bis 300 ps belegen einen hohen Anteil. Für Schaltungen mit einer Anstiegszeit von 100 bis 300ps, 3mil Schichtabstand ist für die meisten Anwendungen nicht mehr geeignet. Damals, Es war notwendig, Schichttechnik mit einem Schichtabstand von weniger als 1 Mio zu verwenden, und FR4 dielektrische Werkstoffe durch Werkstoffe mit hoher Dielektrizitätskonstante zu ersetzen. Jetzt, Keramik und keramische Kunststoffe können die Entwurfsanforderungen von 100 bis 300 ps Anstiegszeitkreisen erfüllen. Obwohl in Zukunft neue Materialien und neue Methoden eingesetzt werden können, für die heutigen üblichen 1 bis 3ns Anstiegszeitkreise, 3 bis 6mil Schichtabstand und FR4 dielektrische Materialien, Es reicht normalerweise aus, High-End-Oberschwingungen zu handhaben und das transiente Signal niedrig genug zu machen, Mit anderen Worten, Gleichtakt-EMI kann sehr niedrig reduziert werden. Die Schichtes Stapeln von Leiterplatten Beispiele in diesem Artikel werden einen Ebenenabstand von 3 bis 6 mils annehmen.

Aus der Perspektive von Signalspuren sollte eine gute Schichtstrategie darin bestehen, alle Signalspuren auf eine oder mehrere Schichten zu legen, und diese Schichten befinden sich neben der Leistungsschicht oder Masseschicht. Für die Stromversorgung sollte eine gute Schichtstrategie darin bestehen, dass die Leistungsschicht an die Bodenschicht angrenzt und der Abstand zwischen der Leistungsschicht und der Bodenschicht so klein wie möglich ist. Das nennen wir die "Layering"-Strategie.

Welche Stapelstrategie für das Stapeln von Leiterplatten hilft EMI abzuschirmen und zu unterdrücken? Das folgende geschichtete Stapelschema geht davon aus, dass der Stromversorgungsstrom auf einer einzigen Schicht fließt und die einzelne Spannung oder mehrere Spannungen in verschiedenen Teilen derselben Schicht verteilt sind. Der Fall mehrerer Leistungsschichten wird später diskutiert.

4-lagige Platte

Es gibt mehrere potenzielle Probleme mit dem 4-Lagen Board Design. Zunächst einmal ist die traditionelle vierschichtige Platte mit einer Stärke von 62 mils, selbst wenn die Signalschicht auf der äußeren Schicht ist und die Energie- und Masseschichten auf der inneren Schicht sind, der Abstand zwischen der Leistungsschicht und der Bodenschicht ist immer noch zu groß.

Wenn die Kostenanforderung zuerst ist, können Sie die folgenden zwei traditionellen 4-Lagen-Plattenalternativen in Betracht ziehen. Diese beiden Lösungen können die Leistung der EMI-Unterdrückung verbessern, eignen sich aber nur für Anwendungen, bei denen die Bauteildichte auf der Platine niedrig genug ist und genügend Fläche um die Komponenten herum vorhanden ist (Platzieren Sie die erforderliche Power-Kupferschicht). Die erste ist die bevorzugte Lösung. Die äußeren Schichten der Leiterplatte sind alle Masseschichten, und die mittleren beiden Schichten sind Signal-/Leistungsschichten. Die Stromversorgung auf der Signalschicht wird mit einer breiten Linie geführt, die die Wegimpedanz des Netzteilstroms niedrig machen kann, und die Impedanz des Signalmikrostreifenpfads ist auch niedrig. Aus Sicht der EMI-Steuerung ist dies die beste 4-lagige PCB-Struktur auf dem Markt. Im zweiten Schema verwendet die äußere Schicht Strom und Masse, und die mittleren beiden Schichten verwenden Signale. Verglichen mit der traditionellen 4-Schicht-Platte ist die Verbesserung kleiner, und die Zwischenschicht-Impedanz ist so schlecht wie die traditionelle 4-Schicht-Platte. Wenn Sie die Leiterbahnimpedanz steuern möchten, muss das obige Stapelschema sehr vorsichtig sein, um die Leiterbahnen unter den Strom- und Erdkupferinseln anzuordnen. Darüber hinaus sollten die Kupferinseln auf der Stromversorgung oder Erdungsschicht so weit wie möglich miteinander verbunden sein, um Gleich- und Niederfrequenz-Konnektivität zu gewährleisten.

6-lagige Platte

Wenn die Dichte der Komponenten auf einer 4-Lagen-Platine relativ hoch ist, ist eine 6-Lagen-Platine am besten. Einige Stapelschemata im 6-Lagen-Board-Design sind jedoch nicht gut genug, um das elektromagnetische Feld abzuschirmen und haben wenig Einfluss auf die Reduzierung des transienten Signals des Leistungsbusses.

10-lagige Platte

Da die isolierende Isolationsschicht zwischen den Mehrschichtplatinen sehr dünn ist, ist die Impedanz zwischen den 10- oder 12-Lagen der Leiterplatte sehr gering. Solange es kein Problem mit der Schichtung und Stapelung gibt, wird vollständig erwartet, dass eine ausgezeichnete Signalintegrität erreicht wird. Es ist schwieriger, 12-Lagen-Platten mit einer Stärke von 62mil herzustellen, und es gibt nicht viele Hersteller, die 12-Lagen-Platten verarbeiten können.

Wenn kein solches Schließloch vorhanden ist, die Induktivität wird größer, die Kapazität wird reduziert, und das EWI wird definitiv zunehmen. Wenn die Signalleitung das aktuelle Paar von Leiterplattenverdrahtung Schichten zu anderen Verdrahtungsschichten durch Durchkontaktierungen, Masseverbindungen sollten in der Nähe der Durchkontaktierungen platziert werden, damit das Schleifensignal reibungslos zur richtigen Erdungsschicht zurückkehren kann. Für die Schichtkombination der vierten und siebten Schicht, the signal loop will return from the power layer or the ground layer (that is, the 5th or 6th layer), weil die kapazitive Kopplung zwischen der Leistungsschicht und der Bodenschicht gut ist, und das Signal ist einfach zu übertragen .