PCB 생산에서의 열량은 주로 세 가지 원천이 있다: (1) 전자 부품의 가열;(2) PCB 자체의 가열;(3) 다른 부분에서 전달되는 열량.
이 세 가지 열원 중 구성 요소에서 발생하는 열이 가장 크고 주요 열원이며 PCB 보드에서 발생하는 열이 그 다음입니다.외부에서 전달되는 열은 시스템의 전반적인 열 설계에 따라 결정되며 잠시 고려하지 않습니다.그런 다음 열 설계의 목적은 구성 요소의 온도와 PCB 보드의 온도를 낮추어 시스템이 적절한 온도에서 제대로 작동할 수 있도록 적절한 조치와 방법을 취하는 것입니다.다음과 같은 몇 가지 측면을 고려할 수 있습니다.
PCB 프로덕션
1.PCB 보드 자체를 통해 열을 방출합니다.현재 널리 사용되는 PCB 보드는 구리/에폭시 유리 천기판 또는 페놀 수지 유리 천기판이며, 소량은 종이 기반 구리 도금판을 사용한다.이러한 기판은 전기적 성능과 가공적 성능이 뛰어나지만 열 방출성이 떨어진다.고열 소자의 열 방출 경로로서 PCB 자체의 수지로부터 열이 전도되는 열을 기대하는 것은 거의 불가능하며, 소자 표면에서 주변 공기로 열을 발산한다.
그러나 전자제품이 부품의 소형화, 고밀도 설치, 고가열 조립의 시대에 접어들면서 표면적이 매우 작은 부품의 표면에 의존하여 열을 방출하는 것만으로는 부족하다.이와 동시에 QFP와 BGA 등 표면설치소자의 광범한 사용으로 하여 이런 소자에서 발생한 대량의 열은 PCB판으로 전이되였다.따라서 발열 문제를 해결하는 가장 좋은 방법은 PCB 보드를 통해 가열 부품과 직접 접촉하는 PCB 자체의 발열 능력을 향상시키는 것이다.발사, 발사.
2.고발열장치 히터와 열전도판.PCB의 소량 구성 요소에서 3 미만의 많은 열이 발생하는 경우 히터 장치에 히트싱크 또는 히트파이프를 추가할 수 있습니다.온도를 낮출 수 없을 때는 팬이 있는 히트싱크를 사용하여 히트싱크를 향상시킬 수 있습니다.가열 장치의 수가 크거나 (3개 이상) 경우 PCB에서 가열 장치의 위치와 높이에 따라 사용자 정의된 특수 히트싱크이거나 대형 평면 히트싱크인 대형 히트싱크 덮개(보드)를 사용할 수 있습니다. 서로 다른 구성 요소의 높이 위치를 절단합니다.
냉각 덮개 전체가 부품 표면에 잠겨 각 부품과 접촉하여 열을 방출합니다.그러나 어셈블리를 조립하고 용접할 때 높은 일관성이 떨어지기 때문에 발열 효과가 좋지 않습니다.일반적으로 컴포넌트 표면에 열 방출 효과를 높이기 위해 소프트한 열 변환 핫 패드를 추가합니다.
3.합리적인 케이블 연결 설계로 발열 감소판의 수지는 열전도성이 떨어지기 때문에 동박선과 구멍은 좋은 열전도체이기 때문에 동박의 잉여율과 열전도구멍을 증가시키는 것이 열을 방출하는 주요 수단이다.
4.고방열 부품을 기판과 연결할 때는 가능한 한 그것들 사이의 열 저항을 낮춰야 한다.열특성의 요구를 더욱 잘 만족시키기 위하여 칩의 밑면에 일부 열전도재료 (예를 들면 열규소고무를 칠함.) 를 사용하고 일정한 접촉면적을 유지하여 부품의 열을 방출할수 있다.
5.수평 방향에서 고출력 부품은 가능한 한 인쇄판의 가장자리에 가깝게 배치하여 전열 경로를 단축한다;수직 방향에서, 고출력 부품은 가능한 한 인쇄판의 상단에 접근하도록 배치되어 이러한 부품이 작동할 때 다른 부품의 온도를 낮춘다.영향
6. 설비에서 인쇄회로기판의 열 방출은 주로 기류에 의존하기 때문에 설계할 때 기류 경로를 연구하고 설비나 인쇄회로기판을 합리적으로 배치해야 한다.공기가 흐를 때, 그것은 항상 저항력이 낮은 곳에서 흐르는 경향이 있기 때문에, 인쇄회로기판에 설비를 배치할 때, 어떤 구역에 큰 공역을 남기는 것을 피한다.전체 기기의 여러 인쇄회로기판 배치도 같은 문제에 주의해야 한다.
온도에 더 민감한 장치는 가장 낮은 온도 영역 (예: 장치의 하단) 에 두는 것이 좋습니다.가열 장치 위에 직접 배치하지 마십시오.수평면에서 여러 장치를 분리하는 것이 좋습니다.
8. 핫스팟이 PCB에 집중되지 않도록 하고, 가능한 한 PCB 보드에 전력을 균일하게 분포하여 PCB 표면의 온도 성능을 균일하게 일치시킨다.설계 과정에서 일반적으로 엄격한 균일 분포를 실현하기는 어렵지만, 핫스팟이 전체 회로의 정상적인 작동에 영향을 미치지 않도록 전력 밀도가 너무 높은 영역을 피해야 한다.