정밀 PCB 제조, 고주파 PCB, 고속 PCB, 표준 PCB, 다중 계층 PCB 및 PCB 조립.
가장 신뢰할 수 있는 PCB 및 PCBA 맞춤형 서비스 팩토리
PCB 기술

PCB 기술 - PCB 오버홀 및 기능 및 어플리케이션

PCB 기술

PCB 기술 - PCB 오버홀 및 기능 및 어플리케이션

PCB 오버홀 및 기능 및 어플리케이션

2021-10-18
View:389
Author:Downs

오버홀은 다층 PCB의 중요한 구성 요소 중 하나이며, 드릴링 비용은 일반적으로 PCB 제조 비용의 30~40% 를 차지합니다.간단히 말해서, PCB의 각 구멍을 오버홀이라고 할 수 있습니다.기능의 관점에서 볼 때, 오버홀은 레이어 간의 전기 연결에 사용되는 두 가지 범주로 나눌 수 있습니다.다른 하나는 기기를 고정하거나 위치를 지정하는 데 사용됩니다.공예로 말하자면, 이러한 오버홀은 일반적으로 블라인드 오버홀, 매몰 오버홀, 관통 오버홀 등 세 종류로 나뉜다.블라인드 구멍은 인쇄회로기판의 상단과 하면에 위치하며 일정한 깊이를 가지고 있다.서피스 선과 아래 내부 선을 연결하는 데 사용됩니다.일반적으로 구멍의 깊이는 일정한 축척 (구멍 지름) 을 초과하지 않습니다.

설계의 관점에서 볼 때, 오버홀은 주로 두 부분으로 구성되어 있는데, 한 부분은 중간의 드릴링이고, 다른 한 부분은 드릴링 주위의 패드 영역이다.이 두 부분의 크기가 오버홀 크기를 결정합니다.분명히 고속, 고밀도의 PCB 설계에서 설계자는 항상 구멍이 작을수록 좋으며, 이렇게 하면 보드에 더 많은 배선 공간을 남길 수 있다.또한 구멍이 작을수록 자체 기생 용량이 작아집니다.작을수록 고속 회로에 더 적합합니다.그러나 구멍 치수의 감소는 비용 증가를 가져오며 구멍을 통과하는 치수는 무한히 감소할 수 없습니다.이는 드릴링과 전기도금 등 공예기술의 제한을 받는다. 구멍이 작을수록 드릴링이 많고 소요시간이 길수록 중심위치에서 쉽게 벗어난다.구멍의 깊이가 드릴링 지름의 6배를 초과하는 경우 구멍 벽에 균일한 구리 도금이 보장되지 않습니다.예를 들어, 일반 6단 PCB 보드의 두께(구멍 통과 깊이)가 50Mil인 경우

회로 기판

그렇다면 정상적인 상황에서 PCB 제조업체가 제공할 수 있는 최소 공경은 8Mil에 불과하다.레이저 드릴 기술이 발전함에 따라 구멍의 크기는 점점 작아질 수 있다.일반적으로 지름이 6Mils보다 작거나 같은 오버홀을 마이크로홀이라고 합니다.오버홀은 일반적으로 HDI(고밀도 상호 연결 구조) 설계에 사용됩니다.icrovia 기술은 용접 디스크에서 직접 펀치 (용접 디스크 펀치) 를 할 수 있으므로 회로 성능이 크게 향상되고 케이블 연결 공간이 절약됩니다.

구멍이 뚫린 기생 용량과 감지

구멍을 통과하는 자체는 기생 잡산 용량을 가지고 있다.구멍 접지층의 용접재 마스크의 지름이 D2, 구멍 통과 용접판의 지름이 D1, PCB 보드의 두께가 T, 보드 기판의 개전 상수가 Isla µ인 것으로 알려진 경우 구멍 통과 기생 용량은 다음과 유사합니다.

C=1.41 섬 TD1/(D2-D1)

과공 기생 용량이 회로에 미치는 주요 영향은 신호의 상승 시간을 연장하고 회로의 속도를 낮추는 것이다.예를 들어, 두께가 50Mil인 PCB의 경우 구멍 통과 용접 디스크의 지름이 20Mil(구멍의 지름 10Mil)이고 용접 마스크의 지름이 40Mil인 경우 위의 공식을 사용하여 구멍 크기와 비슷할 수 있습니다. 기생 용량은 다음과 같습니다.

C=1.41x4.4x0.050x0.020/(0.040-0.020)=0.31pF

이 부분의 용량으로 인한 상승 시간의 변화량은 대체로 다음과 같다.

T10-90=2.2C(Z0/2)=2.2x0.31x(50/2)=17.05ps

이러한 값에서 볼 수 있듯이, 단일 구멍을 통과하는 기생 용량으로 인한 상승 지연의 영향은 그다지 뚜렷하지 않지만, 흔적선에서 구멍을 여러 번 사용하여 층 사이를 전환하면 여러 구멍이 사용됩니다.설계는 반드시 자세하게 고려해야 한다.실제 설계에서는 통과 구멍과 구리 영역 (백 용접 디스크) 사이의 거리를 늘리거나 용접 디스크의 지름을 줄여 기생 용량을 줄일 수 있습니다.

구멍 사용 방법

이상의 과공 기생 특성에 대한 분석을 통해, 우리는 고속 PCB 설계에서 간단해 보이는 과공이 종종 회로 설계에 큰 부정적인 영향을 미친다는 것을 알 수 있다.구멍을 통과하는 기생 효과로 인한 불이익을 줄이기 위해 설계에서 다음 작업을 수행할 수 있습니다.

A는 비용과 신호 품질을 고려하여 치수를 통해 합리적인 치수를 선택합니다.필요한 경우 다른 치수의 오버홀을 사용할 수 있습니다.예를 들어, 전원 공급 장치나 접지 오버홀의 경우 임피던스를 낮추기 위해 더 큰 크기를 사용하는 것을 고려할 수 있으며, 신호 흔적선의 경우 더 작은 오버홀을 사용할 수 있습니다.물론 오버홀 크기가 줄어들면 그에 따른 비용도 증가합니다.

B는 위에서 논의한 두 가지 공식을 도출할 수 있으며, 더 얇은 PCB를 사용하면 구멍을 통과하는 두 개의 기생 매개변수를 줄이는 데 도움이 된다.

C.PCB 보드의 신호 흔적선은 가능한 한 많이 변경되어서는 안 되며, 이는 불필요한 오버홀을 가능한 한 많이 사용해서는 안 된다는 것을 의미한다.

D 전원 공급 장치와 접지의 핀은 근처에 구멍을 뚫어야 하며 오버홀과 핀 사이의 컨덕터는 가능한 한 짧아야 합니다.동등한 전기 감각을 줄이기 위해 여러 개의 오버홀을 병렬로 드릴하는 것을 고려하십시오.

E는 신호 변경 레이어의 구멍 근처에 접지된 구멍을 배치하여 신호에 가장 가까운 반환을 제공합니다.PCB에 이중 접지 구멍을 배치할 수도 있습니다.

F는 고밀도 고속 PCB 보드의 경우 미세 오버홀 사용을 고려할 수 있습니다.