정밀 PCB 제조, 고주파 PCB, 고속 PCB, 표준 PCB, 다중 계층 PCB 및 PCB 조립.
가장 신뢰할 수 있는 PCB 및 PCBA 맞춤형 서비스 팩토리
PCB 기술

PCB 기술 - pcb 디자인 기법 pcb 디자인은 무엇을 주의해야 하는가

PCB 기술

PCB 기술 - pcb 디자인 기법 pcb 디자인은 무엇을 주의해야 하는가

pcb 디자인 기법 pcb 디자인은 무엇을 주의해야 하는가

2021-10-27
View:355
Author:Downs

모든 스위치 전원 설계에서 PCB 보드의 물리적 설계는 마지막 단계입니다.설계 방법이 잘못되면 PCB가 너무 많은 전자기 간섭을 방사하여 전원이 불안정하게 작동할 수 있습니다.분석:

1. 원리도에서 PCB 설계 프로세스까지 컴포넌트 매개변수 설정 -> 원리 네트워크 테이블 입력 -> 설계 매개변수 설정 -> 수동 레이아웃 -> 수동 경로설정 -> 설계 검증 -> 검토 -> CAM 출력.

2. 매개변수 설정 인접한 와이어 사이의 거리는 전기 안전 요구 사항을 충족할 수 있어야 하며 작업 및 생산을 용이하게 하기 위해 가능한 한 넓어야 합니다.최소 간격은 최소한 전압을 견디기에 적합해야 한다.배선 밀도가 낮으면 신호선의 간격을 적절하게 늘릴 수 있습니다.흔적선 간격을 8mil로 설정합니다.

용접판의 내부 구멍 가장자리와 인쇄판 가장자리의 거리는 1mm보다 커야 가공 과정에서 용접판의 결함을 피할 수 있다.용접판에 연결된 흔적선이 비교적 얇을 때 용접판과 흔적선 사이의 연결은 액적모양으로 설계해야 한다.이렇게 하는 장점은 용접판이 쉽게 벗겨지지 않지만 흔적선과 용접판이 쉽게 끊어지지 않는다는 것이다.

회로 기판

셋째, 소자 배치 실천은 PCB 원리도 설계가 정확하고 인쇄회로기판이 잘못 설계되더라도 전자 설비의 신뢰성에 불리한 영향을 미칠 수 있다는 것을 증명한다.예를 들어, 인쇄판의 평행 가는 두 선이 매우 가까우면 신호 파형이 지연되고 전송선의 끝에 반사 노이즈가 발생합니다.전원 공급 장치 및 접지를 잘못 고려하면 제품 성능이 저하될 수 있으므로 인쇄 회로 기판을 설계할 때 올바른 방법에 주의해야 합니다.스위치당 4개의 전류 회로:

(1) 。전원 스위치 AC 회로

(2) 。출력 정류기 AC 회로

(3) 。입력 신호원 전류 회로

(4) 。부하 전류 회로를 출력하는 입력 회로는 근사 직류 전류를 통해 입력 콘덴서를 충전한다.필터 콘덴서는 주로 광대역 에너지 저장 역할을 한다;이와 마찬가지로 출력 필터 콘덴서도 출력 정류기에서 나오는 고주파를 저장하는 데 사용된다.출력된 로드 회로의 직류 에너지를 제거하는 동시에 에너지따라서 필터 콘덴서의 단자를 입력하고 내보내는 것이 중요합니다.입력과 출력 전류 회로는 각각 필터 콘덴서의 끝에서만 전원에 연결할 수 있습니다.입력 / 출력 회로와 전원 스위치 / 정류기 회로 사이에 연결이 있는 경우. 콘덴서의 단자에 직접 연결할 수 없으며, AC 에너지는 입력 또는 출력 필터 콘덴서에서 환경으로 복사됩니다.전원 스위치의 AC 회로와 정류기의 AC 회로에는 고진폭 사다리꼴 전류가 포함됩니다.이 전류의 고조파 분량은 매우 높다.이 주파수는 스위치의 기본 주파수보다 훨씬 크다.피크 폭은 연속 입력 / 출력 직류 전류의 5배에 달할 수 있습니다.전환 시간은 일반적으로 약 50ns입니다.이 두 회로는 전자기 간섭에 가장 취약하므로 이러한 교류 회로는 전원 공급 장치의 다른 인쇄 회로 앞에 배치되어야 합니다.각 루프의 세 가지 주요 부품은 필터 콘덴서, 전원 스위치 또는 정류기, 센서 또는 변압기입니다.부품을 병렬로 배치하고 부품의 위치를 조정하여 부품의 현재 경로를 가능한 한 짧게 만듭니다.스위치 전원 레이아웃을 설정하는 가장 좋은 방법은 전기 설계와 유사합니다.최적의 설계 프로세스는 다음과 같습니다.

변압기 배치

전원 스위치 전류 회로 설계

출력 정류기 전류 회로 설계

제어 회로를 AC 전원 회로에 연결

입력 전류 소스 루프와 입력 필터를 설계합니다.회로의 기능 단위에 따라 출력 부하 회로와 출력 필터를 설계한다.회로의 모든 어셈블리를 배치할 때는 다음 지침을 충족해야 합니다.

(1) 먼저 PCB의 크기를 고려합니다.PCB 크기가 너무 크면 인쇄 회선이 길어지고 임피던스가 증가하며 소음 방지 능력이 낮아지고 비용이 증가합니다.PCB 크기가 너무 작으면 발열이 좋지 않고 인접 회선도 방해받기 쉽다.보드의 가장 좋은 형태는 직사각형이며 가로세로 비율은 3: 2 또는 4: 3입니다.보드 가장자리에 있는 부품은 일반적으로 보드 가장자리에서 2mm 이상 떨어져 있습니다.

(2) 설비를 배치할 때 장래의 용접을 고려하고 너무 밀집하지 말아야 한다.

(3) 각 기능 회로의 핵심 부품을 중심으로 그 주위에 배치한다. 부품은 균일하고 정연하며 치밀하게 PCB에 배치해야 하며, 부품 간의 지시선과 연결을 최소화하고 단축해야 한다.디커플링 콘덴서는 가능한 한 부품의 VCC에 접근해야 한다.

(4) 고주파에서 작동하는 회로의 경우 컴포넌트 간의 분포 매개변수를 고려해야 합니다.일반적으로 회로는 가능한 한 병렬로 배치해야 한다.이렇게 되면 아름다울 뿐만 아니라 설치와 용접이 쉽고 대량 생산이 쉽다.

(5) 회로 흐름에 따라 각 기능 회로 장치의 위치를 배치하여 신호가 쉽게 유통되고 신호가 가능한 한 같은 방향으로 유지되도록 한다.

(6) PCB 레이아웃의 첫 번째 원칙은 케이블 연결 속도를 보장하고, 장치를 이동할 때 비행선의 연결에 주의하며, 연결 관계가 있는 장치를 함께 놓는 것이다.

(7) 가능한 한 회로 면적을 줄여 스위치 전원의 복사 방해를 억제한다.