Pembuatan PCB Ketepatan, PCB Frekuensi Tinggi, PCB Berkelajuan Tinggi, PCB Berbilang Lapisan dan Pemasangan PCB.
Kilang perkhidmatan tersuai PCB & PCBA yang paling boleh dipercayai.
Berita PCB

Berita PCB - Kaedah desain papan PCB telefon bimbit

Berita PCB

Berita PCB - Kaedah desain papan PCB telefon bimbit

Kaedah desain papan PCB telefon bimbit

2021-11-01
View:476
Author:Kavie

Pengisahan fizik melibatkan isu seperti bentangan komponen, orientasi, dan perisai; sekatan elektrik boleh terus dihapus ke sekatan untuk distribusi kuasa, kawat RF, sirkuit sensitif dan isyarat, dan mendarat.

Papan PCB


1 Kami membincangkan isu sekatan fizikal. Bentangan komponen adalah kunci untuk mencapai rancangan RF yang baik. Teknik yang paling berkesan adalah pertama-tama memperbaiki komponen pada laluan RF dan menyesuaikan orientasi mereka untuk minimumkan panjang laluan RF, menjaga input jauh dari output, dan sebanyak mungkin pemisahan tanah sirkuit kuasa tinggi dan sirkuit kuasa rendah.

Kaedah pencetakan papan PCB yang paling berkesan adalah untuk mengatur pesawat tanah utama (tanah utama) pada lapisan kedua di bawah lapisan permukaan, dan lalui garis RF pada lapisan permukaan sebanyak yang mungkin. Mengurangkan saiz botol pada laluan RF tidak hanya boleh mengurangkan induktan laluan, tetapi juga mengurangkan kongsi tentera maya di tanah utama dan mengurangkan peluang tenaga RF bocor ke kawasan lain dalam laminat. Dalam ruang fizikal, litar linear seperti penyampai berbilang-tahap biasanya cukup untuk mengisolasi zon RF berbilang satu sama lain, tetapi penyampai, penyampai, dan penyampai/penyampai frekuensi sementara sentiasa mempunyai RF/IF berbilang. Sinyal-sinyal mengganggu satu sama lain, jadi perlu berhati-hati untuk mengurangi kesan ini.

2 Jejak RF dan IF sepatutnya diseberangi sebanyak mungkin, dan tanah sepatutnya diletakkan diantaranya sebanyak mungkin. Laluan RF yang betul sangat penting untuk prestasi seluruh papan PCB, sebab itulah bentangan komponen biasanya akaun untuk kebanyakan masa dalam rancangan papan PCB telefon bimbit. Dalam rancangan papan PCB telefon bimbit, biasanya litar penyampai bunyi rendah boleh ditempatkan di satu sisi papan PCB, dan penyampai kuasa tinggi ditempatkan di sisi lain, dan akhirnya mereka disambung ke ujung RF dan pemprosesan band dasar di sisi yang sama melalui duplekser. Di antena di hujung peranti. Beberapa trik diperlukan untuk memastikan lubang lurus tidak memindahkan tenaga RF dari satu sisi papan ke sisi lain. Sebuah teknik biasa adalah untuk menggunakan lubang buta di kedua-dua sisi. Kesan negatif lubang langsung boleh diminumkan dengan mengatur lubang langsung di kawasan yang bebas dari gangguan RF di kedua-dua sisi papan PCB. Kadang-kadang mustahil untuk memastikan pengasingan yang cukup antara blok sirkuit berbilang. Dalam kes ini, perlu mempertimbangkan penggunaan perisai logam untuk melindungi tenaga RF di kawasan RF. Perisai logam mesti ditetapkan ke tanah dan mesti disimpan dengan komponen. Jarak yang tepat, jadi ia perlu mengambil ruang papan PCB yang berharga. Ia sangat penting untuk memastikan integriti penutup perisai sebanyak mungkin. Garis isyarat digital yang memasuki melindungi logam patut pergi ke lapisan dalaman sebanyak mungkin, dan lebih baik lapisan PCB di bawah lapisan wayar adalah lapisan tanah. Garis isyarat RF boleh keluar dari ruang kecil di bawah perisai logam dan lapisan kabel di ruang tanah, tetapi sebanyak mungkin tanah disekitar ruang, dan tanah di lapisan berbeza boleh disambung bersama-sama melalui vias berbilang. .

3 Pemisahan kuasa cip yang tepat dan efektif juga sangat penting. Banyak cip RF dengan litar linear terintegrasi sangat sensitif kepada bunyi kuasa. Biasanya, setiap cip perlu menggunakan sehingga empat kondensator dan induktor izolasi untuk memastikan semua bunyi kuasa ditapis keluar. Sirkuit atau amplifikator terlibat sering mempunyai output drain terbuka, jadi induktor tarik-up diperlukan untuk menyediakan muatan RF impedance tinggi dan bekalan kuasa DC impedance rendah. Prinsip yang sama berlaku untuk memutuskan bekalan kuasa di sisi induktor ini. Beberapa cip memerlukan bekalan kuasa berbilang untuk berfungsi, jadi anda mungkin memerlukan dua atau tiga set kondensator dan induktor untuk memutuskannya secara terpisah. Induktor jarang dekat dengan selari, kerana ini akan membentuk pengubah inti udara dan mengakibatkan gangguan antara satu sama lain. Isyarat, jadi jarak diantaranya mesti sekurang-kurangnya sama dengan tinggi salah satu peranti, atau diatur pada sudut kanan untuk minimumkan induksi mereka.

4 Prinsip kawasan elektrik adalah kira-kira sama dengan kawasan fizikal, tetapi ia juga mengandungi beberapa faktor lain. Beberapa bahagian telefon bimbit menggunakan tenaga kerja yang berbeza dan dikawal oleh perisian untuk memperpanjang kehidupan bateri. Ini bermakna bahawa telefon bimbit perlu menjalankan sumber kuasa berbilang, dan ini membawa lebih banyak masalah ke pengasingan. Kuasa biasanya diperkenalkan dari sambungan, dan segera dipasang untuk menapis sebarang bunyi dari luar papan sirkuit, dan kemudian disebarkan selepas melewati set penyunting atau pengatur. Semasa DC kebanyakan sirkuit di papan PCB telefon bimbit agak kecil, jadi lebar jejak biasanya bukan masalah. Namun, garis semasa yang paling luas mungkin mesti dijalankan secara terpisah untuk bekalan kuasa penyampai kuasa tinggi untuk minimumkan titik tegangan trasmis. . Untuk menghindari kehilangan semasa terlalu banyak, butang berbilang diperlukan untuk memindahkan semasa dari satu lapisan ke lapisan lain. Selain itu, jika ia tidak boleh dipasang cukup pada pin bekalan kuasa amplifier kuasa tinggi, bunyi kuasa tinggi akan radiasi ke seluruh papan dan menyebabkan berbagai masalah. Penampilan kuasa tinggi adalah kritikal, dan sering diperlukan untuk merancang perisai logam untuk ia. Dalam kebanyakan kes, ia juga kritikal untuk memastikan output RF jauh dari input RF. Ini juga berlaku untuk penambah, penimbal dan penapis. Dalam kes terburuk, jika output penyampai dan penimbal diberikan kepada input mereka dengan fasa dan amplitud yang sesuai, maka mereka mungkin mempunyai oscilasi diri. Dalam kes terbaik, mereka akan dapat bekerja stabil dalam mana-mana suhu dan keadaan tegang. Malah, mereka mungkin menjadi tidak stabil dan menambah bunyi dan isyarat intermodulasi kepada isyarat RF. Jika garis isyarat RF perlu dilloop dari hujung input penapis kembali ke hujung output, ini mungkin merusak sifat laluan band penapis secara serius. Untuk mendapatkan pengasingan yang baik antara input dan output, tanah mesti diletakkan di sekitar penapis dahulu, dan kemudian tanah mesti diletakkan di kawasan lapisan bawah penapis dan disambung ke tanah utama yang mengelilingi penapis. Ia juga cara yang baik untuk menjaga garis isyarat yang perlu melewati penapis sejauh mungkin dari pin penapis.

Selain itu, pendaratan berbagai tempat di seluruh papan mesti sangat berhati-hati, jika tidak saluran sambungan akan diperkenalkan. Kadang-kadang anda boleh memilih untuk mengambil garis isyarat RF satu-akhir atau seimbang. Prinsip gangguan salib dan EMC/EMI juga berlaku di sini. Garis isyarat RF yang seimbang boleh mengurangkan bunyi dan gangguan salib jika mereka dijalankan dengan betul, tetapi impedance mereka biasanya tinggi, dan lebar garis yang masuk akal mesti disimpan untuk mendapatkan sumber isyarat yang sepadan, jejak dan impedance muatan. Kawalan sebenarnya mungkin akan ada beberapa kesulitan. Penimbal boleh digunakan untuk meningkatkan kesan pengasingan, kerana ia boleh membahagi isyarat yang sama kepada dua bahagian dan digunakan untuk memandu sirkuit berbeza, terutama oscilator setempat mungkin memerlukan penimbal untuk memandu penyampur berbilang. Apabila penyampur mencapai keadaan izolasi mod umum pada frekuensi RF, ia tidak akan berfungsi dengan betul. Penimbal boleh mengisolasi perubahan impedance pada frekuensi yang berbeza, sehingga sirkuit tidak akan mengganggu satu sama lain. Penimbal sangat membantu untuk desain. Mereka boleh mengikuti litar yang perlu dipandu, sehingga jejak output kuasa tinggi sangat pendek. Kerana aras isyarat input penimbal relatif rendah, ia tidak mudah untuk mengganggu orang lain di papan. Sirkuit ini menyebabkan gangguan. Oscilator kawal tegangan (VCOs) boleh tukar tenaga yang berbeza ke frekuensi yang berbeza. Fungsi ini digunakan untuk tukar saluran kelajuan tinggi, tetapi ia juga menukar bunyi jejak pada voltaj kawalan menjadi perubahan frekuensi kecil, yang memberikan isyarat RF menambah bunyi.

5 Untuk memastikan bunyi tidak meningkat, aspek berikut mesti dianggap: Pertama, lebar jalur yang dijangka bagi garis kawalan boleh julat dari DC hingga 2MHz, dan hampir mustahil untuk membuang bunyi jalur lebar melalui penapisan; kedua, garis kawalan VCO biasanya sebahagian dari gelung balas balik yang kawal frekuensi. Ia mungkin memperkenalkan bunyi di banyak tempat, jadi garis kawalan VCO mesti dikendalikan dengan sangat berhati-hati. Pastikan tanah di bawah jejak RF kuat, dan semua komponen tersambung dengan kuat ke tanah utama dan terpisah dari jejak lain yang boleh menyebabkan bunyi. Selain itu, diperlukan untuk memastikan bahawa bekalan kuasa VCO telah cukup terputus. Oleh kerana output RF VCO kadang-kadang adalah tahap relatif tinggi, isyarat output VCO boleh mudah mengganggu sirkuit lain, jadi perhatian istimewa mesti diberikan kepada VCO. Sebenarnya, VCO sering ditempatkan di hujung kawasan RF, dan kadang-kadang ia memerlukan perisai logam. Sirkuit resonan (satu untuk penghantar dan yang lain untuk penerima) berkaitan dengan VCO, tetapi ia juga mempunyai ciri-cirinya sendiri. Simple put, sirkuit resonan adalah sirkuit resonan selari dengan dioda kapasitif, yang membantu menetapkan frekuensi operasi VCO dan modulasi suara atau data ke isyarat RF. Semua prinsip desain VCO juga berlaku untuk sirkuit resonan. Kerana sirkuit resonan mengandungi sejumlah besar komponen, mempunyai kawasan distribusi luas di papan, dan biasanya berjalan pada frekuensi RF yang sangat tinggi, sirkuit resonan biasanya sangat sensitif kepada bunyi. Isyarat biasanya diatur pada pins sebelah cip, tetapi pins isyarat ini perlu bekerja dengan induktor dan kondensator relatif besar, yang bertukar memerlukan induktor dan kondensator ini ditempatkan sangat dekat dan tersambung kembali pada loop kawalan yang sensitif kepada bunyi. Ia tidak mudah untuk melakukan ini.

Penampilkan kawalan gaji automatik (AGC) adalah juga tempat yang susah-masalah, sama ada ia sirkuit penghantar atau menerima akan mempunyai penyampilkan AGC. Penampilkan AGC biasanya boleh menapis bunyi secara efektif, tetapi kerana telefon bimbit mempunyai kemampuan untuk menghadapi perubahan cepat dalam intensiti isyarat yang dihantar dan diterima, sirkuit AGC diperlukan untuk mempunyai lebar band yang cukup luas, yang memudahkan untuk memperkenalkan penyampilkan AGC pada beberapa bunyi sirkuit kunci. Rancangan sirkuit AGC mesti sesuai dengan teknik rancangan sirkuit analog yang baik, yang berkaitan dengan pin op amp input pendek dan laluan feedback pendek, yang keduanya mesti jauh dari jejak isyarat digital RF, IF, atau kelajuan tinggi. Sama seperti, pendaratan yang baik juga penting, dan bekalan kuasa cip mesti terputus dengan baik. Jika diperlukan untuk menjalankan wayar panjang pada akhir input atau output, lebih baik untuk pergi pada akhir output. Biasanya, impedance akhir output jauh lebih rendah dan ia tidak mudah untuk mengakibatkan bunyi. Secara umum, semakin tinggi aras isyarat, semakin mudah ia untuk memperkenalkan bunyi ke dalam sirkuit lain. Dalam semua rancangan PCB, ia adalah prinsip umum untuk menjaga sirkuit digital jauh dari sirkuit analog sebanyak mungkin, dan ia juga berlaku untuk rancangan PCB RF. Tanah dan tanah analog umum untuk melindungi dan memisahkan garis isyarat biasanya sama penting. Oleh itu, dalam tahap awal desain, perancangan berhati-hati, bentangan komponen yang dianggap baik, dan penilaian bentangan yang teliti semua sangat penting, dan sirkuit RF juga perlu digunakan Jauhkan dari garis analog dan beberapa isyarat digital yang sangat kritik. Semua jejak, pads dan komponen RF sepatutnya diisi dengan tembaga tanah sebanyak mungkin dan tersambung ke tanah utama sebanyak mungkin. Jika jejak RF mesti melewati garis isyarat, cuba lalui lapisan tanah yang disambung ke tanah utama sepanjang jejak RF diantaranya. Jika tidak mungkin, pastikan mereka diseberangi, yang boleh minimumkan sambungan kapasitif. Pada masa yang sama, letakkan sebanyak mungkin tanah di sekitar setiap jejak RF dan sambungkan mereka ke tanah utama. Selain itu, mengurangi jarak antara jejak RF selari boleh mengurangi sambungan induktif. Apabila pesawat tanah tegar ditempatkan langsung pada lapisan pertama di bawah permukaan, kesan pengasingan adalah terbaik, walaupun kaedah lain untuk merancang dengan hati-hati juga akan berfungsi. Pada setiap lapisan papan PCB, letakkan sebanyak mungkin dasar dan sambungkan ke tanah utama. Letakkan jejak sebanyak mungkin untuk meningkatkan bilangan plot lapisan isyarat dalaman dan lapisan distribusi kuasa, dan menyesuaikan jejak dengan betul supaya anda boleh mengatur laluan sambungan tanah ke plot terpisah di permukaan. Tanah bebas patut dihindari pada pelbagai lapisan PCB kerana mereka boleh mengambil atau suntik bunyi seperti antena kecil. Dalam kebanyakan kes, jika anda tidak boleh menghubungkannya dengan tanah utama, maka anda lebih baik membuangnya.