1.PCB 레이아웃과 디자인의 간섭을 어떻게 피할 수 있습니까?
변경된 신호(예: 계단식 신호)는 전송선을 따라 A에서 B로 전파됩니다. 전송선 CD에는 결합 신호가 생성됩니다. 변경된 후 신호가 종료되면 안정적인 DC 평소로 신호가 반환되면 결합 신호는 존재하지 않기 때문에 교란은 신호 변환 과정에서만 발생하며 신호 가장자리 변화(전환율)가 빠를수록발생하는 교란이 커질수록공간에서 결합된 전자장은 무수한 결합 콘덴서와 결합 감각의 집합으로 추출될 수 있다.결합 콘덴서에서 발생하는 인터럽트 신호는 피해 네트워크에서 양방향 인터럽트와 역방향 인터럽트 Sc로 나눌 수 있다.이 두 신호는 같은 극성을 가지고 있다.감전으로부터 발생하는 교란 신호도 양방향 교란과 역방향 교란 SL로 나뉘며 이 두 신호는 상반된 극성을 가지고 있다.결합 인덕션과 커패시터에서 발생하는 순방향 인터럽트와 역방향 인터럽트가 동시에 존재하며 크기가 거의 같습니다.이렇게 하면 피해 네트워크의 순방향 교란 신호는 상반된 극성으로 인해 서로 상쇄되고 역방향 교란 극성이 같으며 중첩이 강화된다.
직렬 교란 분석의 모델은 일반적으로 기본 모델, 삼태 모델, 최악의 상황 모델 분석을 포함한다.기본 모드는 신호를 반전시켜 위반 네트워크 드라이브를 구동하고 피해 네트워크 드라이브가 초기 상태 (고전압 또는 저전압) 를 유지한 다음 교란 값을 계산하는 방식으로 실제 교란을 테스트하는 방식과 유사합니다.이런 방법은 단방향 신호의 교란 분석에 더욱 효과적이다.트리플 모드는 반전 신호로 위반 네트워크의 드라이브를 제어하고 손상된 네트워크의 트리플 단자를 임피던스 상태가 높도록 설정하여 트리플 크기를 감지합니다.이 방법은 양방향 또는 복잡한 토폴로지 네트워크에 더 효과적입니다.최악의 시나리오 분석은 피해 네트워크의 드라이버를 초기 상태로 유지하는 것으로, 에뮬레이터는 각 피해 네트워크에 대한 모든 기본 침해 네트워크의 연결 교란의 합을 계산합니다.이 접근 방식은 컴퓨팅할 조합이 너무 많고 시뮬레이션 속도가 상대적으로 느리기 때문에 일반적으로 하나의 핵심 네트워크만 분석합니다.
2.가이드의 구리 면적, 즉 마이크로 밴드 선의 접지 평면, 어떤 규정이 있습니까?
마이크로웨이브 회로의 설계에 있어서 접지 평면의 면적은 전송선의 매개 변수에 영향을 준다.구체적인 알고리즘은 비교적 복잡합니다 (Angelen의 EESOFT 관련 정보 참조).일반 PCB 디지털 회로 전송선 에뮬레이션 계산에서 접지 평면 면적은 전송선 매개변수에 영향을 주지 않거나 영향을 무시합니다.
3.EMC 테스트에서 클럭 신호의 고조파 기준치 초과가 매우 심각하지만 디커플링 콘덴서가 전원 핀에 연결되어 있음을 발견했습니다.PCB 설계에서 전자기 복사를 억제하기 위해 주의해야 할 점은 무엇입니까?
전자기 호환성의 세 가지 요소는 방사선, 전파 경로, 피해자이다.전파 경로는 공간 복사 전파와 케이블 전도로 나뉜다.그러므로 고조파를 억제하려면 우선 고조파의 전파방식을 보아야 한다.전원 분리는 전도 모드의 전파 문제를 해결하기 위한 것이다.또한 필요한 일치 및 차단이 필요합니다.
4, 4층판 디자인의 제품 중 왜 어떤 것은 양면 포장이고, 어떤 것은 그렇지 않은가?
포장의 역할에는 몇 가지 고려 요소가 있다: 1.차단;2.발열;3. 철근;4. PCB 가공 요구사항.그러므로 얼마나 많은 층판을 부설하였든 우리는 반드시 먼저 주요원인을 보아야 한다.여기서 우리는 주로 고속 문제를 토론하기 때문에 우리는 주로 차단을 토론한다.표면 부설은 EMC에 유리하지만 구리 부설은 외딴 섬이 생기지 않도록 가능한 한 완전해야 한다.일반적으로 많은 표층 부품이 배선되어 있으면 동박의 완전성을 확보하기 어렵고 내층 신호의 분할 문제를 초래할 수 있다.따라서 많은 흔적이 있는 표면층 설비나 판에 구리를 깔지 않는 것이 좋다.