혼합 회로 PCB 재료 및 케이블 연결 선택 고려 사항
문제: 오늘날의 무선 통신 장비에서 무선 주파수 부분은 종종 소형화된 실외기 구조를 사용하지만, 무선 주파수 부분, 실외기 중주파 부분과 실외기를 감시하는 저주파 회로 부분은 종종 같은 PCB에 배치된다.말씀 좀 여쭙겠습니다만, 이 PCB 배선의 재료 요구는 무엇입니까?무선 주파수, 중간 주파수 및 저주파 회로 간의 간섭을 어떻게 방지합니까?
답: 혼합회로설계는 큰 문제로서 완벽한 해결방안을 갖기 어렵다.일반적으로 무선 주파수 회로는 시스템에 별도의 단일 보드로 배치되고 경로설정되며 특수 차폐 캐비티도 있습니다.또한 무선 주파수 회로는 일반적으로 단면 또는 양면으로 회로가 상대적으로 간단하며, 이 모든 것은 무선 주파수 회로 분포 매개변수에 대한 영향을 줄이고 무선 주파수 시스템의 일관성을 높이기 위한 것이다.RF 회로 기판은 일반적인 FR4 재료에 비해 높은 Q 기판을 사용하는 경향이 있습니다.이 재료는 상대적으로 작은 개전 상수, 작은 전송선 분포 용량, 높은 임피던스 및 작은 신호 전송 지연을 가지고 있습니다.
혼합 회로 설계에서 무선 및 디지털 회로는 동일한 PCB에 구축되어 있지만 일반적으로 무선 및 디지털 회로 영역으로 나뉘며 개별적으로 레이아웃되고 경로설정됩니다.테이프와 차폐함을 통해 접지하여 그것들 사이를 차폐한다.
가져오기 및 내보내기 종료 방법 및 규칙 정보
문제: 현대 고속 PCB 설계에서는 신호의 무결성을 보장하기 위해 일반적으로 장치의 입력 또는 출력을 종료해야합니다.종료 방법은 무엇입니까?어떤 요소가 종료 방법을 결정했습니까?규칙이 뭐예요?
A: 터미널, 일치라고도 합니다.일반적으로 일치하는 위치에 따라 능동단 일치와 단말기 일치로 나뉜다.원극-단자 일치는 일반적으로 저항 직렬 일치이고 단자 일치는 병렬 일치입니다.저항 상승, 저항 드롭다운, 데이비드 닝 매칭, 교류 매칭, 쇼트키 다이오드 매칭 등 여러 가지 방식이 있다.매칭 방법은 일반적으로 BUFFER 특성, 토폴로지 조건, 레벨 유형 및 판단 방법에 의해 결정되며 신호 점유 비율, 시스템 전력 소비량 등도 고려해야 합니다.디지털 회로의 가장 관건적인 방면은 정시 문제이다.일치를 추가하는 목적은 신호 품질을 향상시키고 의사 결정 시 확인 가능한 신호를 얻기 위한 것입니다.레벨 유효 신호에 대해 건립과 유지 시간을 보장하는 전제하에 신호의 품질이 안정적이다;유효 신호에 대해 신호 지연의 단조성을 확보하는 전제에서 신호 변화 지연 속도는 요구를 만족시킨다.
배선 밀도를 처리할 때 주의해야 할 사항은 무엇입니까?
문제: 회로기판의 크기가 고정될 때 설계에 더 많은 기능을 수용해야 한다면 일반적으로 PCB의 흔적선 밀도를 증가시켜야 하지만 이는 흔적선의 상호간섭을 증가시킬수 있으며 동시에 흔적선의 저항이 너무 얇아 낮출수 없다. 고속 (> 100MHz) 고밀도 PCB 설계에는 어떤 기교가 있는가?
A: 고속 고밀도 PCB를 설계할 때 직렬 간섭 (직렬 간섭) 은 시퀀스와 신호 무결성에 큰 영향을 미치기 때문에 확실히 특별한 주의가 필요합니다.주의해야 할 사항은 다음과 같습니다. 1.이력선 특성 임피던스의 연속성과 일치를 제어합니다.2. 흔적선 간격의 크기.일반적인 간격은 선가중치의 두 배입니다.시뮬레이션을 통해 흔적선 간격이 시퀀스와 신호 완전성에 미치는 영향을 알 수 있고 최소 허용 가능한 간격을 찾을 수 있다.서로 다른 칩 신호의 결과는 다를 수 있습니다.3. 적절한 종료 방법을 선택합니다.4. 경로설정 방향이 같은 두 인접 레이어를 피합니다. 경로설정이 위아래로 겹쳐도 같은 레이어의 인접 경로설정보다 더 큰 간섭이 발생하기 때문입니다.5. 블라인드/매입식 오버홀을 사용하여 흔적선 면적을 늘린다.그러나 PCB 보드의 제조 비용은 증가합니다.실제 구현에서는 완전한 병렬 및 동등한 길이를 구현하기 어렵지만 여전히 가능한 한 많은 것이 필요합니다.또한 차동 단자 및 공통 모드 단자 연결을 유지하여 타이밍 및 신호 무결성에 미치는 영향을 줄일 수 있습니다.