Fabbricazione PCB di precisione, PCB ad alta frequenza, PCB ad alta velocità, PCB standard, PCB multistrato e assemblaggio PCB.
La fabbrica di servizi personalizzati PCB e PCBA più affidabile.
PCB Tecnico

PCB Tecnico - Abilità di progettazione EMC all'interno dei prodotti del circuito stampato PCB

PCB Tecnico

PCB Tecnico - Abilità di progettazione EMC all'interno dei prodotti del circuito stampato PCB

Abilità di progettazione EMC all'interno dei prodotti del circuito stampato PCB

2021-10-28
View:449
Author:Downs

Attualmente, le apparecchiature elettroniche sono ancora utilizzate in varie apparecchiature elettroniche e sistemi con circuiti stampati come metodo principale di assemblaggio. La pratica ha dimostrato che anche se la progettazione schematica del circuito è corretta e il circuito stampato non è correttamente progettato, influenzerà negativamente l'affidabilità delle apparecchiature elettroniche. Ad esempio, se due sottili linee parallele sulla scheda PCB sono vicine tra loro, causerà un ritardo nella forma d'onda del segnale e si formerà rumore di riflessione alla fine della linea di trasmissione. Pertanto, quando si progetta un circuito stampato, si dovrebbe prestare attenzione ad adottare il metodo corretto.

In apparecchiature elettroniche, la messa a terra è un metodo importante per controllare le interferenze

Se la messa a terra e la schermatura possono essere combinati e utilizzati correttamente, la maggior parte dei problemi di interferenza possono essere risolti. La struttura a terra delle apparecchiature elettroniche comprende approssimativamente terra del sistema, terra del telaio (terra dello scudo), terra digitale (terra logica) e terra analogica. I seguenti punti dovrebbero essere prestati attenzione nella progettazione del filo di terra:

1. Scegliere correttamente messa a terra a punto singolo e messa a terra a più punti

Nel circuito a bassa frequenza, la frequenza di lavoro del segnale è inferiore a 1MHz, il suo cablaggio e l'induttanza tra i dispositivi hanno poca influenza e la corrente circolante formata dal circuito di messa a terra ha una maggiore influenza sull'interferenza, quindi dovrebbe essere adottata una messa a terra di un punto. Quando la frequenza di funzionamento del segnale è superiore a 10MHz, l'impedenza del filo di terra diventa molto grande. In questo momento, l'impedenza del filo di terra dovrebbe essere ridotta il più possibile e i punti multipli più vicini dovrebbero essere utilizzati per la messa a terra. Quando la frequenza di lavoro è 1~10MHz, se viene adottata la messa a terra a un punto, la lunghezza del filo di massa non dovrebbe superare 1/20 della lunghezza d'onda, altrimenti dovrebbe essere adottato il metodo di messa a terra a più punti.

scheda pcb

2. Separare circuiti digitali dai circuiti analogici

Sul circuito sono presenti sia circuiti logici ad alta velocità che circuiti lineari. Dovrebbero essere separati il più possibile e i fili di terra dei due non dovrebbero essere mescolati e dovrebbero essere collegati ai fili di terra del terminale di alimentazione. Cercate di aumentare il più possibile l'area di messa a terra del circuito lineare.

3. Rendere il filo di terra il più spesso possibile

Se il cavo di massa è molto sottile, il potenziale di terra cambierà con il cambiamento corrente, causando il livello del segnale di temporizzazione del dispositivo elettronico per essere instabile e le prestazioni anti-rumore per deteriorarsi. Pertanto, il filo di messa a terra dovrebbe essere il più spesso possibile in modo che possa passare la corrente ammissibile sul circuito stampato. Se possibile, la larghezza del filo di terra dovrebbe essere maggiore di 3mm.

4. Formare il filo di terra in un ciclo chiuso

Quando si progetta il sistema di filo di terra del circuito stampato composto solo da circuiti digitali, rendendo il filo di terra in un ciclo chiuso può migliorare significativamente la capacità anti-rumore. Il motivo è che ci sono molti componenti del circuito integrato sul circuito stampato, soprattutto quando ci sono componenti che consumano molta energia, a causa della limitazione dello spessore del filo di terra, verrà generata una grande differenza di potenziale sulla giunzione a terra, con conseguente diminuzione della capacità anti-rumore, se la struttura di messa a terra è formata in un ciclo, la differenza potenziale sarà ridotta e la capacità antirumore delle apparecchiature elettroniche sarà migliorata.

Due, progettazione di compatibilità elettromagnetica del PCB

La compatibilità elettromagnetica si riferisce alla capacità delle apparecchiature elettroniche di lavorare in modo coordinato ed efficace in vari ambienti elettromagnetici. Lo scopo della progettazione di compatibilità elettromagnetica è quello di consentire alle apparecchiature elettroniche di sopprimere tutti i tipi di interferenze esterne, in modo che le apparecchiature elettroniche possano funzionare normalmente in uno specifico ambiente elettromagnetico e, allo stesso tempo, di ridurre le interferenze elettromagnetiche dell'apparecchiatura elettronica stessa ad altre apparecchiature elettroniche.

1. Scegliere una larghezza ragionevole del filo

Poiché l'interferenza di impatto generata dalla corrente transitoria sulle linee stampate è causata principalmente dall'induttanza dei fili stampati, l'induttanza dei fili stampati dovrebbe essere minimizzata. L'induttanza del filo stampato è proporzionale alla sua lunghezza e inversamente proporzionale alla sua larghezza, quindi fili corti e precisi sono utili per sopprimere le interferenze. Le linee di segnale dei cavi di clock, dei driver di fila o degli autisti di autobus spesso trasportano grandi correnti transitorie e i cavi stampati dovrebbero essere il più corti possibile. Per i circuiti discreti dei componenti, quando la larghezza del filo stampato è di circa 1,5 mm, può soddisfare pienamente i requisiti; Per i circuiti integrati, la larghezza del filo stampato può essere selezionata tra 0,2 e 1,0mm.

2. Adottare la corretta strategia di cablaggio

L'uso di un routing uguale può ridurre l'induttanza del filo, ma l'induttanza reciproca e la capacità distribuita tra i fili aumentano. Se il layout lo consente, è meglio utilizzare una struttura di cablaggio a forma di griglia. Il metodo specifico è quello di collegare un lato del PCB orizzontalmente e l'altro lato verticalmente, e quindi collegare con i fori metallizzati ai fori trasversali. Al fine di sopprimere il crosstalk tra i cavi della scheda PCB, il cablaggio uguale a lunga distanza dovrebbe essere evitato durante la progettazione del cablaggio.

Tre, configurazione del condensatore di disaccoppiamento di progettazione del circuito

Nel ciclo di alimentazione DC, il cambiamento del carico causerà il rumore dell'alimentazione elettrica. Ad esempio, nei circuiti digitali, quando il circuito cambia da uno stato all'altro, una grande corrente di picco sarà generata sulla linea elettrica, formando una tensione di rumore transitoria. La configurazione dei condensatori di disaccoppiamento può sopprimere il rumore generato dai cambiamenti di carico, che è una pratica comune nella progettazione di affidabilità dei circuiti stampati. I principi di configurazione sono i seguenti:

Un condensatore elettrolitico 10~100uF è collegato attraverso il terminale di ingresso di alimentazione. Se la posizione del circuito stampato lo consente, l'effetto anti-interferenza di utilizzare un condensatore elettrolitico superiore a 100uF sarà migliore.

Configurare un condensatore ceramico 0.01uF per ogni chip di circuito integrato. Se lo spazio del circuito stampato è piccolo e non può essere installato, un condensatore elettrolitico al tantalio 1-10uF può essere configurato per ogni chip 4-10. L'impedenza ad alta frequenza di questo dispositivo è particolarmente piccola e l'impedenza è inferiore a 1Ω nell'intervallo 500kHz-20MHz. E la corrente di perdita è molto piccola (meno di 0.5uA).

■Per i dispositivi con capacità di rumore debole e grandi cambiamenti di corrente durante lo spegnimento, e dispositivi di archiviazione come ROM, RAM, ecc., un condensatore di disaccoppiamento dovrebbe essere collegato direttamente tra la linea di alimentazione (Vcc) e terra (GND) del chip.

I cavi dei condensatori di disaccoppiamento non possono essere troppo lunghi, specialmente i condensatori bypass ad alta frequenza.

Quattro, dimensione del circuito stampato di progettazione PCB e disposizione del dispositivo

Le dimensioni del PCB dovrebbero essere moderate. Quando la dimensione del PCB è troppo grande, le linee stampate saranno lunghe e l'impedenza aumenterà, non solo la capacità anti-rumore sarà ridotta, ma il costo sarà anche alto; In termini di layout del dispositivo, come altri circuiti logici, i dispositivi collegati tra loro dovrebbero essere posizionati il più vicino possibile in modo da ottenere un migliore effetto anti-rumore. Generatori di orologi, oscillatori a cristalli e terminali di ingresso dell'orologio della CPU sono tutti soggetti al rumore, quindi dovrebbero essere più vicini l'uno all'altro. È molto importante che i dispositivi a rischio di rumore, i circuiti a bassa corrente e i circuiti ad alta corrente siano tenuti il più possibile lontani dai circuiti logici. Se possibile, dovrebbero essere realizzati circuiti stampati separati.

5. Progettazione del circuito stampato e progettazione di dissipazione di calore

Dal punto di vista di favorire la dissipazione del calore, la scheda PCB è meglio installata verticalmente, la distanza tra la scheda e la scheda non dovrebbe essere inferiore a 2 cm e la disposizione dei componenti sulla scheda PCB dovrebbe seguire determinate regole:

■Per le apparecchiature che utilizzano il raffreddamento ad aria a convezione libera, è meglio organizzare circuiti integrati (o altri dispositivi) in modo verticale; per le apparecchiature che utilizzano il raffreddamento ad aria forzata, è meglio disporre circuiti integrati (o altri dispositivi) in modo orizzontale Row.

■I dispositivi sulla stessa scheda PCB dovrebbero essere disposti per quanto possibile in base al loro potere calorifico e al grado di dissipazione del calore. I dispositivi con basso potere calorifico o scarsa resistenza al calore (come piccoli transistor di segnale, circuiti integrati su piccola scala, condensatori elettrolitici, ecc.) devono essere collocati nel flusso d'aria di raffreddamento. Il flusso più alto (all'ingresso), i dispositivi con grande resistenza al calore o al calore (come transistor di potenza, circuiti integrati su larga scala, ecc.) sono posizionati al più a valle del flusso d'aria di raffreddamento.

■Nella direzione orizzontale, i dispositivi ad alta potenza sono posizionati il più vicino possibile al bordo della scheda PCB per accorciare il percorso di trasferimento del calore; in direzione verticale, i dispositivi ad alta potenza sono posizionati il più vicino possibile alla parte superiore della scheda PCB per ridurre l'impatto di questi dispositivi sulla temperatura di altri dispositivi.

■I dispositivi sensibili alla temperatura sono posizionati meglio nella zona di temperatura più bassa (come il fondo del dispositivo). Non posizionarlo direttamente sopra il dispositivo di riscaldamento. È meglio sfalsare più dispositivi sul piano orizzontale.

■La dissipazione del calore della scheda PCB nell'apparecchiatura dipende principalmente dal flusso d'aria, quindi il percorso del flusso d'aria dovrebbe essere studiato durante la progettazione e il dispositivo o il circuito stampato dovrebbe essere ragionevolmente configurato. Quando l'aria scorre, tende sempre a fluire in luoghi con bassa resistenza, quindi quando si configurano dispositivi su un circuito stampato, evitare di lasciare un ampio spazio aereo in una certa area.