Plusieurs problèmes à prendre en compte pour la conception de la fiabilité des cartes PCB dans les systèmes DSP haute vitesse.
1, conception de puissance
Dans la conception de PCB pour les systèmes DSP à grande vitesse, la première chose à considérer est la conception de l'alimentation. Dans la conception de l'alimentation, les méthodes suivantes sont généralement utilisées pour résoudre les problèmes d'intégrité du signal.
2, considérez le découplage de la puissance et de la terre
À mesure que la fréquence de fonctionnement du DSP augmente, le DSP et d'autres éléments IC ont tendance à être miniaturisés et densément encapsulés. Généralement, les plaques multicouches sont considérées dans la conception du circuit. Il est recommandé que l'alimentation et la mise à la terre peuvent utiliser une couche dédiée, pour plusieurs sources d'alimentation, par exemple, la tension d'alimentation DSP I / o est différente de la tension d'alimentation de base, deux couches d'alimentation différentes peuvent être utilisées. Si l'on considère les coûts d'usinage d'un panneau multicouche, il est possible d'utiliser une couche dédiée pour plus de câblage ou une alimentation relativement critique. Le câblage de la source d'alimentation peut être identique à celui de la ligne de signal, mais la largeur de la ligne doit être suffisante.
Que la carte dispose ou non d'une couche de terre et d'une couche d'alimentation dédiées, il est essentiel d'ajouter un certain condensateur raisonnablement réparti entre l'alimentation et la terre. Pour économiser de l'espace et réduire le nombre de Vias, il est recommandé d'utiliser plus de condensateurs à plaques. Le condensateur patch peut être placé à l'arrière de la carte PCB, c'est - à - dire sur la surface de soudage. Le condensateur de la puce est connecté au via avec un fil large et est connecté à l'alimentation et à la masse via le via.
3. Considérez les règles de câblage pour la distribution électrique
Couche d'alimentation analogique et numérique indépendante
Les éléments analogiques haute vitesse et haute précision sont très sensibles aux signaux numériques. Par example, un amplificateur amplifie le bruit de commutation pour le rapprocher du signal impulsionnel et donc des Parties analogiques et numériques de la carte, les couches de puissance devant souvent être séparées.
Isoler les signaux sensibles
Certains signaux sensibles (comme les horloges à haute fréquence) sont particulièrement sensibles aux interférences sonores et doivent faire l'objet de mesures d'isolation de haut niveau. Les horloges à haute fréquence (au - dessus de 20 MHz, ou celles dont le temps de retournement est inférieur à 5 NS) doivent être protégées par une ligne de terre d'au moins 10 mils de largeur de ligne d'horloge et d'au moins 20 mils de largeur de ligne de terre protégée. Les trous sont bien en contact avec le sol et sont percés tous les 5 cm pour se connecter au sol; Le côté émission de l'horloge doit être en série avec une résistance d'amortissement de 22 angströms ½ 220 angströms. Les perturbations induites par le bruit du signal apporté par ces lignes peuvent être évitées.
Conception anti - interférence Software - Hardware
Normalement, la carte PCB du système d'application DSP haute vitesse est conçue par l'utilisateur en fonction des exigences spécifiques du système. En raison de la capacité de conception limitée et des conditions de laboratoire, si des mesures anti - interférence parfaites et fiables ne sont pas prises, une fois que l'environnement de travail n'est pas idéal, des interférences électromagnétiques se produiront, entraînant des perturbations dans le processus du programme DSP. Lorsque le Code de fonctionnement normal d'un DSP ne peut pas être restauré, le programme court ou se bloque et peut même endommager certains composants. Il faut prendre soin de prendre les mesures anti - brouillage correspondantes.
Conception anti - interférence matérielle
L'efficacité anti - interférence matérielle est élevée. La conception anti - interférence matérielle est préférée lorsque la complexité, le coût et le volume du système sont tous supportables. Les techniques anti - interférence matérielles couramment utilisées peuvent être résumées dans les catégories suivantes:
(1) Filtrage matériel: le filtre RC peut grandement atténuer divers signaux d'interférence à haute fréquence. Par exemple, l'interférence des "bavures" peut être supprimée.
(2) Mise à la terre raisonnable: conception raisonnable du système de mise à la terre, pour le système de circuit numérique et analogique à grande vitesse, il est très important d'avoir une couche de mise à la terre à faible impédance et à grande surface. La couche de terre peut non seulement fournir un chemin de retour à faible impédance pour les courants à haute fréquence, mais peut également rendre EMI et RFI plus petits, mais a également un effet de blindage contre les interférences extérieures. Séparer la mise à la terre analogique de la mise à la terre numérique lors de la conception du PCB.
(3) Mesures de blindage: alimentation en courant alternatif, alimentation haute fréquence, équipement à courant fort, l'étincelle électrique produite par l'arc électrique produira des ondes électromagnétiques et deviendra une source de bruit pour les interférences électromagnétiques. Un boîtier métallique peut être utilisé pour entourer l'appareil ci - dessus et le mettre à la terre. Ceci est très efficace pour masquer les perturbations causées par l'induction électromagnétique.
(4) isolation photoélectrique: l'isolateur photoélectrique peut éviter efficacement les interférences mutuelles entre les différentes cartes de circuit imprimé. Les isolateurs optoélectroniques à grande vitesse sont généralement utilisés pour l'interface des DSP et d'autres appareils tels que les capteurs, les interrupteurs, etc.
Conception anti - interférence logicielle
L'anti - interférence logicielle présente l'avantage que l'anti - interférence matérielle ne peut être remplacée. Dans les systèmes d'application DSP, la capacité anti - interférence du logiciel doit également être suffisamment explorée pour minimiser l'impact des interférences. Plusieurs méthodes efficaces d'anti - interférence logicielle sont présentées ci - dessous.
(1) filtrage numérique: le bruit du signal d'entrée analogique peut être éliminé par filtrage numérique. Les techniques de filtrage numérique couramment utilisées sont: le filtrage médian, le filtrage de moyenne arithmétique, etc.
(2) set Trap: définit une partie du Programme d'amorçage dans une zone de programme inutilisée. Lorsqu'un programme est perturbé et saute dans cette zone, le programme de démarrage force le démarrage du programme capturé à l'adresse spécifiée et utilise un programme spécial pour corriger le programme incorrect. Traitement.
(3) redondance d'instruction: l'insertion de deux ou trois octets d'instruction de non - fonctionnement NOP après l'instruction de deux octets et l'instruction de trois octets peut empêcher le Programme d'entrer automatiquement sur la bonne voie si le système de DSP est perturbé par l'emballement du programme.
(4) réglage du temps de chien de garde: si un programme hors de contrôle entre dans une « boucle sans fin», la technique du « chien de garde» est souvent utilisée pour sortir le programme de la « boucle sans fin». Le principe est d'utiliser une minuterie qui génère des impulsions en fonction d'une période définie. Si vous ne voulez pas générer cette impulsion, le DSP devrait effacer la minuterie pour un temps inférieur à la période définie; Mais quand le programme DSP est en cours d'exécution, il ne l'est pas. La minuterie sera effacée au besoin et les impulsions générées par la minuterie seront utilisées comme signaux de Réinitialisation DSP pour réinitialiser et initialiser à nouveau le DSP.
4, conception de compatibilité électromagnétique
La compatibilité électromagnétique fait référence à la capacité d'un appareil électronique à fonctionner correctement dans un environnement électromagnétique complexe. Le but de la conception de la compatibilité électromagnétique est de permettre à l'électronique de supprimer toutes sortes de perturbations externes, tout en réduisant les perturbations électromagnétiques de l'électronique à d'autres appareils électroniques. Dans la carte PCB proprement dite, il y a plus ou moins de phénomènes d'interférence électromagnétique, c'est - à - dire de diaphonie entre signaux voisins. L'ampleur de la diaphonie est liée à la capacité de distribution et à l'inductance de distribution entre les boucles. Les mesures suivantes peuvent être prises pour remédier à cette interférence électromagnétique mutuelle entre les signaux:
5. Choisissez la largeur raisonnable de fil
L'effet du courant transitoire sur la ligne imprimée est principalement causé par l'inductance de la ligne imprimée, qui est directement proportionnelle à la longueur de la ligne imprimée et inversement proportionnelle à sa largeur. L'utilisation de fils courts et larges est donc favorable à la suppression des interférences. Les fils de signal des conducteurs d'horloge et de bus ont généralement un courant transitoire important et leurs lignes d'impression doivent être aussi courtes que possible. Pour les circuits à composants discrets, la largeur de la ligne imprimée est d'environ 1,5 mm pour répondre aux exigences; Pour les circuits intégrés, la largeur de la ligne imprimée est choisie entre 0,2 mm et 1,0 mm.
Utilisez la structure de câblage réseau de well - tac.
La méthode spécifique consiste à câbler horizontalement la première couche de câblage de la carte d'impression PCB et verticalement la couche suivante.