Fabricación de PCB de precisión, PCB de alta frecuencia, PCB multicapa y montaje de PCB.
Es la fábrica de servicios personalizados más confiable de PCB y PCBA.
Tecnología de PCB

Tecnología de PCB - Cómo resolver el problema del EMI para mejorar el rendimiento de los productos de PCB de varias capas

Tecnología de PCB

Tecnología de PCB - Cómo resolver el problema del EMI para mejorar el rendimiento de los productos de PCB de varias capas

Cómo resolver el problema del EMI para mejorar el rendimiento de los productos de PCB de varias capas

2021-10-07
View:597
Author:Downs

En el diseño del Circuito de alimentación, la interferencia electromagnética es uno de los factores clave que afectan el rendimiento del producto. En la actualidad, para los ingenieros, hay muchas maneras de resolver los problemas del emi. En general, los métodos para inhibir el EMI incluyen: recubrimiento inhibidor del emi, diseño de simulación del EMI y selección de componentes de supresión del EMI adecuados. este artículo comenzará con el PCB e introducirá el papel y la tecnología de diseño de la pila estratificada de PCB en el control de la radiación del emi.

Cómo resolver el problema del EMI para mejorar el rendimiento de los productos de PCB de varias capas

Colocar adecuadamente un capacitor de capacidad adecuada cerca del pin de alimentación del IC puede hacer que el salto de voltaje de salida del IC cambie rápidamente. Sin embargo, el problema no ha terminado ahí. Debido a la respuesta de frecuencia limitada de los condensadores, los condensadores no pueden generar la Potencia armónica necesaria para conducir la salida IC de manera limpia en toda la banda de frecuencia. Además, los voltaje instantáneos formados en el bus de alimentación formarán caídas de voltaje en los inductores de la ruta de desacoplamiento, y estos voltaje instantáneos son la principal fuente de interferencia EMI de modo común. ¿¿ cómo debemos resolver estos problemas?

Placa de circuito

En el caso de los IC en nuestra placa de circuito, la capa de potencia alrededor del IC puede considerarse un excelente capacitor de alta frecuencia, que puede recoger parte de la energía filtrada por los condensadores discretos y proporcionar energía de alta frecuencia para la salida limpia. Además, los inductores de las buenas capas de potencia deben ser más pequeños, por lo que las señales transitorias sintetizadas por los inductores también deben ser más pequeñas, lo que reduce el EMI de modo común.

Por supuesto, la conexión entre la capa de alimentación y el pin de alimentación IC debe ser lo más corta posible, ya que el borde ascendente de la señal digital es cada vez más rápido, lo mejor es conectarse directamente a la almohadilla donde se encuentra el pin de alimentación ic. Esto debe discutirse por separado.

Para controlar el EMI de modo común, el plano de Potencia debe ayudar a desacoplar y tener una inducción lo suficientemente baja. Este plano dinámico debe ser un par de planos dinámicos cuidadosamente diseñados. ¿Alguien puede preguntar, ¿ qué tan bueno es? La respuesta a esta pregunta depende de la estratificación de la fuente de alimentación, el material entre las capas y la frecuencia de trabajo (es decir, la función del tiempo de subida del ic). Por lo general, la distancia entre las capas de potencia es de 6 mils, la capa intermedia es de material fr4 y la capacidad equivalente por pulgada cuadrada de la capa de potencia es de aproximadamente 75 PF. Obviamente, cuanto menor sea el espaciamiento de las capas, mayor será el capacitor.

No hay muchos dispositivos con un tiempo de subida entre 100 y 300ps, pero según la velocidad actual de desarrollo de ic, los dispositivos con un tiempo de subida dentro del rango de 100 - 300ps representarán una gran proporción. Para circuitos con un tiempo de subida de 100 a 300ps, el espaciamiento de capas 3mil ya no será adecuado para la mayoría de las aplicaciones. En ese momento, era necesario utilizar una técnica de estratificación con una distancia entre capas inferior a 1 milímetro y reemplazar el material dieléctrico fr4 por un material con una alta permitividad. Ahora, la cerámica y los plásticos cerámicos pueden cumplir con los requisitos de diseño de los circuitos de tiempo de subida de 100 a 300ps.

Aunque en el futuro pueden utilizarse nuevos materiales y métodos, para los circuitos comunes de tiempo de subida de 1 a 3 ns, el espaciamiento de capas de 3 a 6 mils y el material dieléctrico fr4 suelen ser suficientes para procesar armónicos de alta gama y hacer que las señales transitorias sean lo suficientemente bajas, es decir, el EMI de modo común puede reducirse muy bajo. El ejemplo de diseño de apilamiento estratificado de PCB dado en este artículo asumirá una distancia de capa de 3 a 6 milímetros.

Blindaje electromagnético

Desde el punto de vista de los rastros de señal, una buena estrategia de estratificación debe ser colocar todos los rastros de señal en una o varias capas, y estas capas están al lado de la capa de alimentación o la formación de tierra. Para la fuente de alimentación, una buena estrategia de estratificación debe ser que la capa de alimentación sea adyacente a la formación de puesta a tierra, y la distancia entre la capa de alimentación y la formación de puesta a tierra sea lo más pequeña posible. Esto es lo que llamamos una estrategia "jerárquica".

Apilamiento de PCB

¿¿ qué estrategias de apilamiento ayudan a bloquear y inhibir el emi? El siguiente esquema de apilamiento estratificado asume que la corriente de alimentación fluye en una sola capa y que un solo voltaje o múltiples voltaje se distribuyen en diferentes partes de la misma capa. Más tarde se discutirá la situación de varias capas de potencia.

Tablero de 4 pisos

Hay varios problemas potenciales en el diseño de placas de 4 pisos. En primer lugar, la placa tradicional de cuatro capas con un espesor de 62 milímetros, incluso si la capa de señal está en la capa exterior y la capa de alimentación y la formación de puesta a tierra están en la capa interior, la distancia entre la capa de alimentación y la formación de puesta a tierra sigue siendo demasiado grande.

Si los requisitos de costo son los primeros, puede considerar las siguientes dos alternativas tradicionales de 4 pisos. Ambas soluciones mejoran el rendimiento de inhibición del emi, pero solo son adecuadas para aplicaciones en las que la densidad de componentes en la placa es lo suficientemente baja y hay suficiente área alrededor del componente (colocar la capa de cobre de alimentación necesaria).

La primera es la solución preferida. La capa exterior del PCB es la formación de tierra, y las dos capas intermedias son la capa de señal / fuente de alimentación. La fuente de alimentación en la capa de señal adopta un cableado de línea ancha, lo que puede hacer que la resistencia de la ruta de la corriente de alimentación sea baja y la resistencia de la ruta de MICROSTRIP de la señal también sea baja. Desde el punto de vista del control emi, esta es la mejor estructura de PCB de cuatro capas existente; La segunda solución utiliza la fuente de alimentación y la tierra en la capa exterior, y la señal en la capa media. En comparación con las placas de cuatro capas tradicionales, la mejora es menor, y la resistencia entre las capas es tan pobre como la de las placas de cuatro capas tradicionales.

Si desea controlar la resistencia del rastro, el esquema de apilamiento anterior debe tener mucho cuidado de colocar el rastro debajo de la fuente de alimentación y la isla de cobre de tierra; Además, la fuente de alimentación o la isla de cobre de tierra deben estar interconectadas en la medida de lo posible. Asegúrese de la conexión de corriente continua y baja frecuencia.

Tablero de 6 pisos

Si la densidad de componentes en las cuatro capas es relativamente alta, las seis capas son las mejores. Sin embargo, algunos de los esquemas de apilamiento en el diseño de la placa de seis pisos no son suficientes para proteger el campo electromagnético y tienen poco impacto en la reducción de la señal instantánea del bus de alimentación. En el primer ejemplo, la fuente de alimentación y el suelo se colocan en la segunda y Quinta capa, respectivamente. Debido a la alta resistencia de cobre de la fuente de alimentación, es muy desfavorable controlar la radiación EMI de modo común. Sin embargo, este método es muy correcto desde el punto de vista del control de resistencia de la señal.