Esistono molti modi per risolvere i problemi dell'IME. I moderni metodi di soppressione EMI includono: utilizzo di rivestimenti di soppressione EMI, selezione di parti di soppressione EMI appropriate e progettazione di simulazione EMI. Partendo dal layout PCB più basilare, questo articolo discute il ruolo e le tecniche di progettazione dell'impilamento stratificato PCB nel controllo della radiazione EMI.
Bus di alimentazione
Posizionare correttamente un condensatore di capacità appropriata vicino al pin di alimentazione del IC può rendere il salto di tensione di uscita IC più veloce. Tuttavia, il problema non finisce qui. A causa della risposta in frequenza limitata del condensatore, il condensatore non può generare la potenza armonica necessaria per guidare l'uscita IC in modo pulito nell'intera banda di frequenza. Inoltre, la tensione transitoria formata sul bus di alimentazione formerà una caduta di tensione attraverso l'induttanza del percorso di disaccoppiamento e queste tensioni transitorie sono le principali fonti di interferenza EMI di modo comune. Come risolvere questi problemi?
Per quanto riguarda l'IC sul nostro circuito stampato, lo strato di potenza intorno al IC può essere considerato come un eccellente condensatore ad alta frequenza, che può raccogliere la parte dell'energia trapelata dal condensatore discreto che fornisce energia ad alta frequenza per un'uscita pulita. Inoltre, l'induttanza di un buon livello di potenza dovrebbe essere piccola, quindi anche il segnale transitorio sintetizzato dall'induttanza è piccolo, riducendo così l'EMI di modalità comune.
Naturalmente, la connessione tra lo strato di alimentazione e il pin di alimentazione IC deve essere il più breve possibile, perché il bordo ascendente del segnale digitale sta diventando sempre più veloce ed è meglio collegarlo direttamente al pad in cui si trova il pin di alimentazione IC. La questione va discussa separatamente.
Per controllare l'EMI in modalità comune, il piano di potenza deve aiutare il disaccoppiamento e avere un'induttanza sufficientemente bassa. Questo piano di potenza deve essere una coppia di piani di potenza ben progettati. Qualcuno potrebbe chiedere, quanto bene è buono? La risposta alla domanda dipende dalla stratificazione dell'alimentazione elettrica, dai materiali tra gli strati e dalla frequenza di funzionamento (cioè in funzione del tempo di salita del IC). Generalmente, la spaziatura dello strato di potere è 6mil e l'intercalare è materiale FR4, la capacità equivalente dello strato di potere per pollice quadrato è di circa 75pF. Ovviamente, più piccola è la spaziatura dello strato, maggiore è la capacità.
Non ci sono molti dispositivi con un tempo di salita da 100 a 300 ps, ma secondo l'attuale velocità di sviluppo IC, i dispositivi con un tempo di salita nell'intervallo da 100 a 300 ps occuperanno una proporzione elevata. Per circuiti con un tempo di salita da 100 a 300ps, la spaziatura dello strato da 3mil non sarà più adatta per la maggior parte delle applicazioni. A quel tempo, era necessario utilizzare la tecnologia di stratificazione con una distanza di strato inferiore a 1 mil e sostituire i materiali dielettrici FR4 con materiali con una costante dielettrica elevata. Ora, la ceramica e la plastica ceramica possono soddisfare i requisiti di progettazione dei circuiti a tempo di salita da 100 a 300 ps.
Anche se nuovi materiali e nuovi metodi possono essere utilizzati in futuro, per i circuiti di aumento comuni da 1 a 3ns di oggi, la spaziatura degli strati da 3 a 6mil e i materiali dielettrici FR4, di solito è sufficiente gestire armoniche di fascia alta e rendere il segnale transitorio abbastanza basso, vale a dire, l'EMI in modalità comune può essere ridotto molto basso. Gli esempi di progettazione di impilamento stratificato PCB forniti in questo articolo assumeranno una spaziatura dello strato da 3 a 6 mil.
Schermatura elettromagnetica
Dal punto di vista delle tracce di segnale, una buona strategia di stratificazione dovrebbe essere quella di mettere tutte le tracce di segnale su uno o più strati, e questi strati sono accanto allo strato di potenza o allo strato di terra. Per l'alimentazione elettrica, una buona strategia di stratificazione dovrebbe essere che lo strato di potenza sia adiacente allo strato di terra e la distanza tra lo strato di potenza e lo strato di terra sia il più piccola possibile. Questa è quella che chiamiamo strategia di "stratificazione".
Impilazione PCB
Quale strategia di stacking aiuta a proteggere e sopprimere l'EMI? Il seguente schema di impilamento stratificato presuppone che la corrente di alimentazione fluisca su un unico strato e che la tensione singola o le tensioni multiple siano distribuite in parti diverse dello stesso strato. Il caso di più livelli di potenza sarà discusso più avanti.
Scheda a 4 strati
Ci sono diversi potenziali problemi con il design della scheda a 4 strati. Prima di tutto, la tradizionale scheda a quattro strati con uno spessore di 62 mil, anche se lo strato di segnale è sullo strato esterno e gli strati di potenza e terra sono sullo strato interno, la distanza tra lo strato di potenza e lo strato di terra è ancora troppo grande.
Se il requisito di costo è primo, è possibile considerare le seguenti due tradizionali alternative di bordo a 4 strati. Queste due soluzioni possono migliorare le prestazioni di soppressione EMI, ma sono adatte solo per applicazioni dove la densità dei componenti sulla scheda è abbastanza bassa e c'è abbastanza spazio intorno ai componenti (posizionare lo strato di rame di potenza richiesto).
La prima è la soluzione preferita. Gli strati esterni del PCB sono strati di terra e i due strati centrali sono strati di segnale / potenza. L'alimentazione elettrica sullo strato del segnale è instradata con una linea ampia, che può rendere bassa l'impedenza del percorso della corrente dell'alimentazione elettrica e anche l'impedenza del percorso del microscatto del segnale è bassa. Dal punto di vista del controllo EMI, questa è la migliore struttura PCB a 4 strati disponibile. Nel secondo schema, lo strato esterno utilizza potenza e terra, e i due strati centrali utilizzano segnali. Rispetto alla tradizionale scheda a 4 strati, il miglioramento è più piccolo e l'impedenza tra strati è povera come la tradizionale scheda a 4 strati.
Se si desidera controllare l'impedenza di traccia, lo schema di impilamento di cui sopra deve essere molto attento a sistemare le tracce sotto le isole di potenza e rame macinato. Inoltre, le isole di rame dell'alimentazione elettrica o dello strato di terra dovrebbero essere interconnesse il più possibile per garantire la connettività DC e a bassa frequenza.
Scheda a 6 strati
Se la densità dei componenti su una scheda a 4 strati è relativamente alta, una scheda a 6 strati è la migliore. Tuttavia, alcuni schemi di impilamento nel design della scheda a 6 strati non sono abbastanza buoni per schermare il campo elettromagnetico e hanno poco effetto sulla riduzione del segnale transitorio del bus di alimentazione.
Il design generale a 6 strati ad alte prestazioni dispone generalmente il primo e il sesto strato come strati di terra, e il terzo e quarto strato sono utilizzati per potenza e terra. Poiché ci sono due doppi strati di linea del segnale microstrip nel mezzo tra lo strato di potenza e lo strato di terra, la capacità di soppressione EMI è eccellente. Lo svantaggio di questo design è che ci sono solo due strati di routing. Come accennato in precedenza, se le tracce esterne sono corte e il rame viene posato nell'area traceless, lo stesso impilamento può essere ottenuto anche con una tradizionale scheda a 6 strati.
Un altro layout della scheda a 6 strati è segnale, terra, segnale, potere, terra, segnale, che può realizzare l'ambiente richiesto per la progettazione avanzata dell'integrità del segnale. Lo strato di segnale è adiacente allo strato di terra e lo strato di potenza e lo strato di terra sono accoppiati. Ovviamente, lo svantaggio è l'accatastamento sbilanciato degli strati.
Questo di solito porta problemi alla produzione. La soluzione al problema è riempire tutte le aree vuote del terzo strato con rame. Dopo che il rame è riempito, se la densità di rame del terzo strato è vicina allo strato di potenza o allo strato di terra, questa scheda non può essere strettamente considerata come un circuito stampato strutturalmente bilanciato. L'area riempita di rame deve essere collegata all'alimentazione o alla messa a terra. La distanza tra i vias di connessione è ancora 1/20 lunghezza d'onda, e potrebbe non essere necessario connettersi ovunque, ma dovrebbe essere collegato in circostanze ideali.
Riassuma
Lo spessore, via processo e il numero di strati del circuito stampato nella progettazione del circuito stampato non sono la chiave per risolvere il problema. L'impilamento a strati eccellente è quello di garantire il bypass e il disaccoppiamento del bus di alimentazione e ridurre al minimo la tensione transitoria sullo strato di alimentazione o sullo strato di terra. E la chiave per schermare il campo elettromagnetico del segnale e dell'alimentazione elettrica. Idealmente, ci dovrebbe essere uno strato di isolamento isolante tra lo strato di instradamento del segnale e lo strato di terra di ritorno e la spaziatura dello strato accoppiata (o più di una coppia) dovrebbe essere il più piccola possibile. Sulla base di questi concetti e principi di base, è possibile progettare un circuito stampato in grado di soddisfare sempre i requisiti di progettazione. Ora che il tempo di aumento di IC è molto breve e sarà più breve, la tecnologia discussa in questo articolo è essenziale per risolvere il problema della schermatura EMI.