Fabricant et Assemblage des cartes électroniques ultra-précis, PCB haute-fréquence, PCB haute-vitesse, et PCB standard ou PCB multi-couches.
On fournit un service PCB&PCBA personnalisé et très fiable pour tout vos projets.
Technologie PCB

Technologie PCB - Fonction de dissipation thermique pour la technologie de conception de PCB

Technologie PCB

Technologie PCB - Fonction de dissipation thermique pour la technologie de conception de PCB

Fonction de dissipation thermique pour la technologie de conception de PCB

2021-10-05
View:439
Author:Downs

Analyse des facteurs d'augmentation de la température des circuits imprimés

La cause directe de l'augmentation de la température de la carte de circuit imprimé est la présence de dispositifs consommateurs d'énergie du circuit. Les appareils électroniques ont tous différents degrés de consommation d'énergie, et l'intensité du chauffage varie avec l'ampleur de la consommation d'énergie.

Deux phénomènes de montée en température des circuits imprimés:

(1) élévation de température locale ou élévation de température de grande surface;

(2) augmentation de la température à court terme ou augmentation de la température à long terme.

L'analyse du travail thermique des PCB prend du temps et est généralement effectuée à partir des aspects suivants.

1. Consommation électrique

(1) Analyser la consommation d'énergie par unité de surface;

(2) Analyser la distribution de la consommation d'énergie sur la carte PCB.

2. Structure du circuit imprimé

(1) les dimensions de la carte de circuit imprimé;

(2) Matériel de la carte de circuit imprimé.

3. Comment installer une carte de circuit imprimé

(1) Méthode d'installation (p. ex. installation verticale, installation horizontale);

(2) Conditions d'étanchéité et distance du manchon.

4. Rayonnement thermique

(1) l'émissivité de la surface de la carte de circuit imprimé;

(2) La différence de température entre la carte de circuit imprimé et les surfaces adjacentes et leur température absolue / paire;

5. Conduction thermique

(1) installer un radiateur;

(2) conduction d'autres composants structurels installés.

6. Convection thermique

(1) convection naturelle;

(2) convection par refroidissement forcé.

2. Méthode de dissipation thermique de la carte

Carte de circuit imprimé

1). Unités à haute production de chaleur plus radiateurs et plaques conductrices de chaleur

Lorsqu'un petit nombre de composants dans un PCB produit beaucoup de chaleur (moins de 3), un radiateur ou un caloduc peut être ajouté à un composant chauffant. Lorsque la température ne peut pas être abaissée, un radiateur avec ventilateur peut être utilisé pour améliorer la dissipation de chaleur. Lorsque le nombre d'appareils de chauffage est grand (plus de 3), il est possible d'utiliser de grands couvercles de dissipation de chaleur (plaques), qui sont des radiateurs spéciaux adaptés à la position et à la hauteur de l'appareil de chauffage sur le PCB, ou de grands radiateurs plats. Le couvercle dissipateur de chaleur est intégralement encliqueté sur la surface des composants et dissipe la chaleur au contact de chaque composant. Cependant, la dissipation de chaleur est médiocre en raison de la faible consistance des composants lors de l'assemblage et du soudage. Généralement, un tampon thermique doux à changement de phase thermique est ajouté à la surface de l'élément pour améliorer l'effet de dissipation de chaleur.

2). Dissipation de chaleur par la carte PCB elle - même

À l'heure actuelle, la carte PCB largement utilisée est un substrat en tissu de verre plaqué cuivre / époxy ou un substrat en tissu de verre en résine phénolique, une petite quantité de plaque de cuivre plaquée à base de papier est utilisée. Malgré leurs excellentes propriétés électriques et d'usinage, ces substrats présentent une mauvaise dissipation thermique. En tant que chemin de dissipation de chaleur pour les composants hautement générateurs de chaleur, il est presque impossible de s'attendre à ce que la chaleur de la résine provenant du PCB lui - même conduise la chaleur, mais plutôt la dissipe de la surface du composant dans l'air ambiant. Cependant, alors que l'électronique est entrée dans l'ère de la miniaturisation des composants, de l'installation à haute densité et de l'assemblage à haute température, il ne suffit pas de compter uniquement sur la dissipation de chaleur à la surface de composants de très petite surface. Dans le même temps, en raison de l'utilisation généralisée d'éléments montés en surface tels que qfp, BGA, etc., la chaleur générée par les éléments est transférée en grande quantité sur la carte PCB. Par conséquent, un bon moyen de résoudre le problème de la dissipation de chaleur est d'améliorer la capacité de dissipation de chaleur du PCB lui - même qui est en contact direct avec l'élément chauffant et conduit à travers la carte PCB. Sortir ou envoyer.

3). Adopter une conception de câblage raisonnable pour la dissipation de chaleur

En raison de la mauvaise conductivité thermique de la résine dans la plaque, tandis que les fils et les trous de la Feuille de cuivre sont de bons conducteurs thermiques, l'augmentation du taux résiduel de la Feuille de cuivre et des trous conducteurs de chaleur est le principal moyen de dissiper la chaleur.

Pour évaluer la capacité de dissipation thermique d'un PCB, il est nécessaire de calculer la conductivité thermique équivalente (neuf équivalents) d'un matériau composite composé de divers matériaux ayant des conductivités thermiques différentes - le substrat isolant du PCB.

4. Pour les dispositifs refroidis par air à convection libre, les circuits intégrés (ou autres dispositifs) doivent être disposés verticalement ou horizontalement. Les dispositifs sur une même plaque imprimée doivent être disposés autant que possible en fonction de leur pouvoir calorifique et du degré de dissipation de la chaleur. Les équipements à faible pouvoir calorifique ou à faible résistance thermique (par exemple, petits Transistors de signalisation, petits circuits intégrés, condensateurs électrolytiques, etc.) doivent être placés à la couche supérieure (entrée) du flux d'air de refroidissement, Les dispositifs qui génèrent beaucoup de chaleur ou qui résistent bien à la chaleur (tels que les transistors de puissance, les grands circuits intégrés, etc.) sont situés dans la partie la plus basse du flux d'air de refroidissement.

Dans le sens horizontal, le dispositif de forte puissance est agencé le plus près possible du bord de la plaque d'impression pour raccourcir le trajet de transfert thermique; Dans la direction verticale, les dispositifs de forte puissance sont agencés le plus près possible du Haut de la plaque d'impression pour abaisser la température des autres dispositifs lorsque ceux - ci fonctionnent. Impact. Les appareils plus sensibles à la température doivent être placés dans la zone de température la plus basse (par exemple, au bas de l'appareil). Ne le placez pas directement au - dessus du dispositif de chauffage. Plusieurs appareils sont disposés sur des plans horizontaux entrelacés. La dissipation de chaleur des cartes de circuit imprimé dans les appareils repose principalement sur le flux d'air, de sorte que le chemin du flux d'air doit être étudié lors de la conception et que l'appareil ou la carte de circuit imprimé est raisonnablement configuré. Lorsque l'air circule, il a toujours tendance à circuler là où la traînée est faible, de sorte que lors de la configuration de l'appareil sur une carte de circuit imprimé, évitez de laisser un grand espace aérien dans une certaine zone. La configuration de plusieurs cartes de circuit imprimé dans une machine entière doit également prêter attention aux mêmes problèmes.

Évitez la concentration des points chauds sur le PCB, Répartissez la puissance aussi uniformément que possible sur la carte PCB et maintenez la performance de la température de surface du PCB uniformément et uniformément. Il est souvent difficile d'obtenir une distribution strictement uniforme lors de la conception, mais les zones où la densité de puissance est trop élevée doivent être évitées pour éviter que les points chauds n'affectent le bon fonctionnement de l'ensemble du circuit. Si possible, il est nécessaire d'analyser l'efficacité thermique du circuit imprimé. Par exemple, le module logiciel d'analyse d'indicateurs d'efficacité thermique ajouté à certains logiciels de conception de circuits imprimés professionnels peut aider les concepteurs à optimiser la conception de leurs circuits.