Hassas PCB İmalatı, Yüksek Frekanslı PCB, Yüksek Hızlı PCB, Standart PCB, Çok Katmanlı PCB ve PCB Montajı.
PCB Teknik

PCB Teknik - PCB devre sınıfının işlem özellikleri

PCB Teknik

PCB Teknik - PCB devre sınıfının işlem özellikleri

PCB devre sınıfının işlem özellikleri

2021-10-23
View:358
Author:Downs

PCB devre kurulu endüstri geliştirme süreci, yeniden çözme teknolojisinde açık bir tren. Principle, geleneksel eklenti parçaları da yeniden çözülebilir, yani genellikle delikten yeniden çözümleme olarak adlandırılır. Önemli şu ki, tüm sol birliklerini aynı zamanda tamamlamak ve üretim maliyetlerini azaltmak mümkün. Ancak sıcaklık hassas komponentler, bir karşılaştırıcı ya da SMD olup olmadığı yerleştirme uygulamasını sınırlar. Sonra insanlar seçimli çözümlere dikkatini çevirdi. Çoğu uygulamalarda seçimli çözüm yeniden çözülmeden sonra kullanılabilir. Bu, kalan eklenti parçalarını tamamlamak için ekonomik ve etkili bir yol olacak ve gelecekte özgür önümüz çözmesiyle tamamen uyumlu olacak.

Seçimli çözümlerin işlem özellikleri

Seçimli çözümlerin süreç özellikleri dalga çözümlerini karşılaştırarak anlayabilir. İkisi arasındaki en açık fark şu ki, dalga çözmesinde, PCB'nin aşağıdaki kısmı sıvı çökmesinde tamamen bozulmuş, seçimli çözmesinde, sadece bazı özel bölgeler çökme dalgasıyla bağlantılıyor. PCB kendisi kötü ısı yönetimi ortamda olduğundan dolayı yakın komponentlerin ve PCB bölgesinin soluştuğu sıcaklık ve eritmeyecek. Kıvır çözülmeden önce de önce uygulanmalıdır. Dalga çözmesiyle karşılaştırıldı, flux sadece PCB'nin alt kısmına, tüm PCB'nin yerine çözülmesi için uygulanır. Ayrıca seçimli çözüm sadece eklenti komponentlerin çözmesine uygulanır. Seçimli karışma yeni bir yöntemdir. Seçimli karıştırma süreçlerini ve ekipmanlarını temel bir anlama başarılı karıştırmak için gerekli.

pcb tahtası

Seçici çözüm süreci

Tipik seçimli çözümleme süreci: flux spraying, PCB preheating, dip soldering ve soldering sürükleyin.

Flux kaplama süreci

Seçimli çözümlerde, fluks kaplama süreci önemli bir rol oynuyor. Sıcaklık ve çözümleme sonunda, fluks köprüsünü önlemek ve PCB oksidasyonu engellemek için yeterli etkinlik olmalı. Flux spraying, PCB'yi flux bozluğundan taşımak için X/Y manipulatörü tarafından taşınır ve flux solulacak PCB'ye yayılır. Flüks, tek bulmaca spray, mikro delik spray ve sinkron çoklu nokta/örnek spray gibi birçok yöntemi var. Mikrodalgılık en önemli çözüm sürecinden sonra en yüksek seçimli çözüm için en önemli şey fluksinin doğru yayılmasıdır. Mikro-delik jet asla uzaklıkların dışında bölgeyi kirlemez. Mikro noktaların süpürüşünün en az flux noktalarının diametri 2 mm'den daha büyük. Bu yüzden PCB'de yerleştirilen flux noktasının doğruluğu, ±0,5mm'dir, flux her zaman kaldırılmış bölümde örtülür. Sürüm fluksi toleransiyonu teminatçı tarafından sağlıyor ve teknik belirlenmesi kullanılan fluksi miktarını belirtmek için %100 güvenlik toleransi menzili genelde öneriliyor.

Ön ısınma süreci

Seçimli çözüm sürecinde önısınma amacı sıcak stresimi azaltmak değil, çözücüyü kaldırmak ve fluksini önden kurutmak, bu yüzden fluksinin çözücü dalgasına girmeden önce doğru viskozitliği vardır. Çıkarma sırasında, çözüm kalitesinde ısınmanın etkisi önemli bir faktör değil. PCB materyal kalınlığı, aygıt paketleme belirtileri ve flux tipi önısıma sıcaklığının ayarlamasını belirliyor. Seçimli çözümlerde, önısınma için farklı teoretik açıklamalar var: bazı süreç mühendisleri, fluks patlamadan önce PCB'nin önısınmasını düşünüyor; Başka bir görüntü, ısınma gerekli değil ve çözüm doğrudan gerçekleştiriliyor. Kullanıcı özel durumlara göre seçimli kurma sürecini ayarlayabilir.

Kaldırma süreci

Seçimli çözümleme için iki farklı süreç var: çözümleme ve çözümleme sürükleyin.

Seçimli çözümleme süreci küçük bir çözümleme dalgası üzerinde tamamlandı. Sürükleme süreci PCB'deki çok sıkı alanlarda çözmek için uygun. Örneğin: individuel çözücüler toplantıları ya da pinler, tek sıradaki pinler çözülebilir. PCB, en iyi çözüm kalitesini elde etmek için çözüm dalgasının çözüm dalgasına farklı hızlarda ve açılarda hareket ediyor. Kıpırdama sürecinin stabiliyetini sağlamak için, kıpırdama noktasının iç diametri 6 mm'den az. Solder çözümün akış yöntemi kararlandıktan sonra, çözüm tipleri farklı çözüm ihtiyaçları için farklı yönlerde yüklüyor ve iyileştiriliyor. Manipulatör farklı yönlerden sol dalgasına yaklaşır, yani 0° ve 12° arasındaki farklı açılarda, bu yüzden kullanıcılar elektronik komponentlerde farklı cihazları çözebilir. Çoğu aygıtlar için tavsiye edilen tilt açısı 10°.

Dip çözümleme süreciyle karşılaştırıldı, sürükleme çözümleme sürecinin sol çözümlerini ve PCB tahtasının hareketi sıcak dönüştürme etkinliğini çözümleme sürecinden daha iyi yapar. Ancak sıcaklık oluşturmak için gerekli sıcaklık sol dalgası tarafından aktarılır, fakat tek sol dalgasının solucu kalitesi küçük ve sadece sol dalgasının relativ yüksek sıcaklığı sürecinin ihtiyaçlarına uyuyor. Örneğin: Solder s ıcaklığı 275 derece Celsius ~300 derece Celsius ve çekme hızı genellikle kabul edilebilir. Nitrogen, solucu dalgalarını oksidinizlemeden engellemek için karıştırma bölgesinde temin ediliyor. Solder dalgası oksidasyonu yok ediyor, bu yüzden sürükleme süreci boğulma defeklerinden kaçırır. Bu avantaj sürükleme sürecinin stabilliğini ve güveniliğini arttırır.