Pembuatan PCB Ketepatan, PCB Frekuensi Tinggi, PCB Berkelajuan Tinggi, PCB Berbilang Lapisan dan Pemasangan PCB.
Kilang perkhidmatan tersuai PCB & PCBA yang paling boleh dipercayai.
Rancangan Elektronik

Rancangan Elektronik - Apa pengetahuan yang diperlukan untuk desain PCB?

Rancangan Elektronik

Rancangan Elektronik - Apa pengetahuan yang diperlukan untuk desain PCB?

Apa pengetahuan yang diperlukan untuk desain PCB?

2021-09-25
View:654
Author:Aure

Apa pengetahuan yang diperlukan untuk desain PCB?

jurutera rancangan PCB perlu menguasai julat luas sistem pengetahuan, meliputi teori elektrik, prestasi komponen, litar digital dan litar analog, teknologi pemprosesan PCBA dan teori kemudahan penghasilan DFM, operasi latihan penywelding, lukisan skematik dan layout, logik program mikrokawal dan prinsip asas, dll.

1. Jika sistem sirkuit direka mengandungi peranti FPGA, perisian Quartus II mesti digunakan untuk mengesahkan tugas pin sebelum melukis skema. (Beberapa pin istimewa dalam FPGA tidak dapat digunakan sebagai IO biasa).


2. Papan 4 lapisan dari atas ke bawah adalah: lapisan pesawat isyarat, tanah, kuasa, lapisan pesawat isyarat; papan 6 lapisan dari atas ke bawah adalah: lapisan pesawat isyarat, tanah, lapisan elektrik dalaman isyarat, lapisan elektrik dalaman isyarat, lapisan pesawat kuasa dan isyarat. Untuk papan dengan 6 lapisan atau lebih (keuntungan ialah: radiasi anti-gangguan), kawat lapisan elektrik dalaman dipilih, dan lapisan pesawat tidak dibenarkan untuk pergi. Ia dilarang untuk kawat dari tanah atau lapisan kuasa (sebab: lapisan kuasa akan dibahagi, menghasilkan kesan parasit).


Apa pengetahuan yang diperlukan untuk desain PCB?



3. Kawalan sistem bekalan kuasa berbilang: Jika sistem FPGA+DSP dibuat dari papan 6 lapisan, akan ada sekurang-kurangnya 3.3V+1.2V+1.8V+5V.

3.3V adalah biasanya bekalan kuasa utama, dan lapisan kuasa ditetapkan secara langsung, dan ia mudah untuk melacak rangkaian kuasa global melalui laluan;

5V mungkin secara umum adalah input kuasa, dan hanya kawasan kecil tembaga diperlukan. Dan sebisak mungkin.

1.2V dan 1.8V adalah bekalan kuasa inti (jika anda menggunakan secara langsung kaedah sambungan wayar, anda akan menghadapi kesulitan besar bila menghadapi peranti BGA). Cuba memisahkan 1.2V dan 1.8V semasa bentangan, dan biarkan 1.2V atau 1.8V sambung Komponen disediakan dalam kawasan kompat dan disambung oleh tembaga

Secara singkat, kerana rangkaian bekalan kuasa tersebar di seluruh PCB, ia akan sangat rumit dan panjang untuk berjalan sekitar jika ia dijalankan. Kaedah meletakkan tembaga adalah pilihan yang baik!


4. Kabel diantara lapisan sebelah mengadopsi kaedah salib: ia boleh mengurangi gangguan elektromagnetik diantara wayar selari dan memudahkan kabel.


5. Apa kaedah pengasingan untuk pengasingan analog dan digital? Sepisahkan peranti yang digunakan untuk isyarat analog dari yang digunakan untuk isyarat digital semasa bentangan, dan kemudian memotong seluruh cip AD di seluruh papan!

Isyarat analog ditetapkan dengan tanah analog, dan bekalan kuasa tanah/analog analog dan bekalan kuasa digital disambung pada satu titik melalui induktor/magnet bead.


6. Rancangan PCB berdasarkan perisian rancangan PCB juga boleh dianggap sebagai proses pembangunan perisian. Keenjinan perisian memperhatikan idea "pembangunan berulang" untuk mengurangi kemungkinan ralat PCB.

(1) Periksa diagram skematik, beri perhatian khusus kepada kuasa dan tanah peranti (kuasa dan tanah adalah darah sistem, dan tidak boleh berlaku kecemasan);

(2) Lukisan pakej PCB (sahkan sama ada pins dalam diagram skematik salah);

(3) Selepas mengesahkan saiz pakej PCB satu per satu, tambahkan label pengesahihan dan tambahkannya ke perpustakaan pakej desain ini;

(4) Import senarai rangkaian, laraskan urutan isyarat dalam skema semasa meletakkan (fungsi pengangkatan otomatik komponen OrCAD tidak boleh lagi digunakan selepas bentangan).


Dalam proses desain khusus, pengetahuan asas yang perlu dikawal termasuk:

1. Persiapan awal

Termasuk persiapan perpustakaan komponen dan diagram skematik. Sebelum melanjutkan dengan rancangan PCB, kita mesti pertama-tama sediakan perpustakaan komponen SCH skematik dan perpustakaan pakej komponen PCB.

Pustaka pakej komponen PCB yang terbaik ditetapkan oleh jurutera berdasarkan data saiz piawai peranti yang dipilih. Dalam prinsip, tetapkan perpustakaan pakej komponen PC dahulu, dan kemudian tetapkan perpustakaan komponen SCH skematik.

Keperlukan perpustakaan pakej komponen PCB tinggi, yang secara langsung mempengaruhi pemasangan PCB; perlukan perpustakaan komponen SCH diagram skematik relatif longgar, tetapi perhatikan untuk menentukan atribut pin dan hubungan yang sepadan dengan perpustakaan pakej komponen PCB.


2. Ralat struktur PCB

Menurut saiz papan sirkuit yang ditentukan dan pelbagai posisi mekanik, lukis bingkai PCB dalam persekitaran reka PCB, dan letakkan sambungan yang diperlukan, butang/tombol, lubang skru, lubang kumpulan, dll. mengikut keperluan posisi.

Pertimbangkan dan tentukan kawasan kawat dan kawasan bukan kawat (seperti berapa banyak kawasan sekitar lubang skru milik kawasan bukan kawat kawat).


3. Projek bentangan PCB

Rancangan bentangan adalah untuk meletakkan komponen dalam bingkai PCB mengikut keperluan rancangan. Jana senarai rangkaian (Design-CreateNetlist) dalam alat skematik, kemudian import senarai rangkaian (Design-ImportNetlist) dalam perisian PCB. Selepas senarai rangkaian berjaya diimport, ia akan wujud di latar belakang perisian. Melalui operasi Pemasangan, semua peranti boleh dipanggil keluar, dan terdapat sambungan segera garis terbang diantara pin. Pada masa ini, rancangan bentangan peranti boleh dilakukan.

Design bentangan PCB adalah proses penting pertama dalam keseluruhan proses bentangan PCB. Semakin kompleks papan PCB, semakin baik bentangan boleh mempengaruhi secara langsung kesukaran kabel kemudian.

Design bentuk bergantung pada pengetahuan asas sirkuit papan sirkuit pereka dan pengalaman desain yang kaya, yang merupakan keperluan tahap tinggi bagi pereka papan sirkuit. Penjana papan sirkuit asas mempunyai sedikit pengalaman dan sesuai untuk desain bentangan modul kecil atau tugas bentangan PCB dengan kesulitan papan umum yang lebih rendah.


4. Projek kabel PCB

Rancangan bentangan PCB adalah proses dengan muatan kerja terbesar di seluruh rancangan PCB, yang secara langsung mempengaruhi prestasi papan PCB.

Dalam proses reka PCB, kabel biasanya mempunyai tiga alam:

Yang pertama ialah distribusi, yang merupakan keperluan masukan paling asas untuk desain PCB;

Yang kedua adalah kepuasan prestasi elektrik, yang merupakan piawai untuk mengukur sama ada papan PCB berkualiti. Selepas kabel ditetapkan, betulkan kabel dengan hati-hati untuk mencapai prestasi elektrik terbaik;

Ketiga, kawat yang cerah dan indah, kacau, walaupun prestasi elektrik telah lulus, ia akan menyebabkan kesusahan besar untuk pengubahsuaian kemudian papan optimizasi dan ujian dan pemeliharaan. Keperluan kabel adalah bersih dan seragam, dan mereka tidak boleh diseberangi dan disorder.


5. Pengoptimasi kawat dan pemasangan skrin sutra

"Rancangan PCB bukan yang terbaik, hanya lebih baik", "rancangan PCB adalah seni cacat", ini terutama kerana rancangan PCB perlu menyadari keperluan rancangan semua aspek perkakasan, dan keperluan individu mungkin berkonflik antara satu sama lain. Kaki beruang tidak boleh mempunyai kedua-dua.

Contohnya: projek desain PCB perlu dirancang sebagai papan 6 lapisan selepas penilaian oleh perancang papan sirkuit, tetapi perkakasan produk mesti dirancang sebagai papan 4 lapisan disebabkan pertimbangan biaya, jadi lapisan tanah perisai isyarat hanya boleh dikorbankan, yang mengakibatkan kabel sebelah Salib isyarat antara lapisan meningkat dan kualiti isyarat berkurang.

Pengalaman rancangan umum adalah: masa untuk optimumkan kabel adalah dua kali ganda masa kabel pertama. Selepas optimasi bentangan PCB selesai, proses-selepas diperlukan. Perkara pertama yang perlu dilakukan adalah logo skrin sutra di permukaan PCB. Aksara skrin sutra bawah perlu dicerminkan semasa desain untuk mengelakkan kekeliruan dengan skrin sutra atas.


6. Pemeriksaan rangkaian DRC dan pemeriksaan struktur

Kawalan kualiti adalah bahagian penting proses reka PCB. Kaedah kawalan kualiti umum termasuk: reka-pemeriksaan diri, reka-pemeriksaan bersama, mesyuarat ulasan pakar, pemeriksaan istimewa, dll.

Diagram skematik dan diagram unsur struktur adalah keperluan desain yang paling asas. Pemeriksaan DRC rangkaian dan pemeriksaan struktur adalah untuk mengesahkan bahawa rancangan PCB memenuhi dua syarat input senarai rangkaian skematik dan diagram unsur struktur.

Secara umum, perancang papan sirkuit akan mempunyai semak kualiti desain mereka sendiri yang dikumpulkan Checklist, di mana masukan sebahagian datang dari spesifikasi syarikat atau jabatan, dan bahagian lain datang dari ringkasan pengalaman mereka sendiri. Pemeriksaan khas termasuk pemeriksaan keberanian dan pemeriksaan DFM rancangan. Kedua bahagian ini fokus pada rancangan PCB dan output pemprosesan belakang fail gerber.


Papan sistem PCB 7

Sebelum PCB secara rasmi diproses dan dihasilkan, perancang papan sirkuit perlu berkomunikasi dengan PE penyedia PCB untuk menjawab soalan pengesahan penghasil mengenai pemroses papan PCB.

Ini termasuk tetapi tidak terbatas kepada: pemilihan model papan PCB, penyesuaian lebar garis lapisan sirkuit dan jarak garis, penyesuaian kawalan impedance, penyesuaian tebal stacking PCB, teknologi pemprosesan permukaan, kawalan toleransi terbuka dan standar penghantaran, dll.