Chính xác sản xuất PCB, PCB tần số cao, PCB cao tốc, PCB chuẩn, PCB đa lớp và PCB.
Nhà máy dịch vụ tùy chỉnh PCB & PCBA đáng tin cậy nhất.
Công nghệ PCB

Công nghệ PCB - Thiết kế đa lớp điện

Công nghệ PCB

Công nghệ PCB - Thiết kế đa lớp điện

Thiết kế đa lớp điện

2021-09-20
View:710
Author:Frank

Có một số vấn đề tiềm ẩn liên quan đến thiết kế bảng 4 tầng đa năng. Đầu tiên, một tấm bốn lớp truyền thống dày 62 mils, ngay cả khi lớp tín hiệu ở bên ngoài và nguồn điện và hệ thống ở bên trong, khoảng cách giữa lớp điện và hệ thống vẫn còn quá lớn. Cả hai giải pháp đều có thể cải thiện hiệu suất ức chế EMI, nhưng chỉ dành cho các ứng dụng có mật độ thành phần trên bo mạch đủ thấp và đủ diện tích xung quanh thành phần (đặt lớp đồng cung cấp điện cần thiết). Đầu tiên là giải pháp ưa thích. Các lớp bên ngoài của PCB là tất cả các hình thành, và hai lớp giữa là lớp tín hiệu/nguồn. Nguồn điện trên lớp tín hiệu sử dụng dây rộng, có thể làm cho trở kháng đường dẫn của dòng điện thấp hơn và trở kháng của đường dẫn vi băng tín hiệu thấp hơn. Từ quan điểm điều khiển EMI, đây là cấu trúc PCB 4 lớp tốt nhất hiện nay. Trong sơ đồ thứ hai, các lớp bên ngoài sử dụng nguồn điện và mặt đất, và các tín hiệu được sử dụng ở hai lớp giữa. Những cải tiến nhỏ hơn so với các tấm 4 lớp truyền thống, với trở kháng giữa các lớp kém như các tấm 4 lớp truyền thống.

Bảng mạch

Nếu bạn muốn kiểm soát trở kháng dấu vết, sơ đồ xếp chồng ở trên phải rất cẩn thận để sắp xếp các dấu vết dưới đảo đồng cung cấp điện và mặt đất. Ngoài ra, các đảo đồng trên nguồn điện hoặc hệ thống nên được kết nối với nhau càng nhiều càng tốt để đảm bảo kết nối DC và tần số thấp.

Bảng 6 lớp Nếu mật độ thành phần trên bảng 4 lớp tương đối cao, thì bảng 6 lớp là tốt nhất. Tuy nhiên, một số sơ đồ xếp chồng trong thiết kế bảng 6 lớp không đủ để che chắn trường điện từ và ít ảnh hưởng đến tín hiệu thoáng qua làm giảm bus nguồn. Hai ví dụ được thảo luận dưới đây. Trong ví dụ đầu tiên, nguồn điện và mặt đất được đặt trên lớp thứ hai và thứ năm tương ứng. Do trở kháng đồng cao của nguồn điện, việc kiểm soát bức xạ EMI chế độ chung là rất bất lợi. Tuy nhiên, phương pháp này rất đúng từ quan điểm điều khiển trở kháng tín hiệu. Trong ví dụ thứ hai, nguồn điện và mặt đất được đặt trên lớp thứ ba và thứ tư tương ứng. Thiết kế này giải quyết vấn đề trở kháng đồng cung cấp điện. EMI chế độ khác biệt tăng lên do hiệu suất che chắn điện từ kém của lớp đầu tiên và lớp thứ sáu. Nếu số lượng đường tín hiệu trên cả hai lớp ngoài là tối thiểu và dấu vết có chiều dài ngắn (ngắn hơn 1/20 bước sóng hài tối đa của tín hiệu), thiết kế này có thể giải quyết vấn đề EMI chế độ khác biệt. Điền vào các khu vực trên lớp ngoài mà không có các thành phần và dấu vết và nối đất các khu vực phủ đồng (khoảng cách mỗi 1/20 bước sóng), đặc biệt tốt cho việc ức chế EMI chết khác biệt. Như đã đề cập trước đó, cần phải kết nối khu vực đồng với mặt phẳng nối đất bên trong tại nhiều điểm. Các thiết kế bảng 6 lớp hiệu suất cao nói chung thường sử dụng các lớp đầu tiên và thứ sáu làm tầng nối đất và các lớp thứ ba và thứ tư cho nguồn điện và mặt đất. Có khả năng ức chế EMI tốt vì có hai lớp dây tín hiệu microband kép ở giữa lớp nguồn và lớp hình thành. Nhược điểm của thiết kế này là chỉ có hai lớp định tuyến. Như đã đề cập trước đó, nếu các dấu vết bên ngoài ngắn hơn và đồng được đặt trong khu vực không có dấu vết, thì việc xếp chồng tương tự cũng có thể đạt được với các tấm 6 lớp truyền thống. Một cách bố trí bảng 6 lớp khác là tín hiệu, mặt đất, tín hiệu, nguồn điện, mặt đất và tín hiệu có thể đạt được môi trường cần thiết cho thiết kế toàn vẹn tín hiệu tiên tiến. Các lớp tín hiệu liền kề với sự hình thành, và các lớp năng lượng và sự hình thành được ghép nối. Rõ ràng, nhược điểm là xếp chồng các lớp không cân bằng. Điều này thường gây rắc rối cho sản xuất. Giải pháp cho vấn đề là lấp đầy tất cả các khu vực trống của lớp thứ ba bằng đồng. Sau khi đổ đầy đồng, nếu mật độ đồng của lớp thứ ba gần với lớp cung cấp năng lượng hoặc hình thành, bảng không thể được tính chính xác là bảng cân bằng cấu trúc. Khu vực làm đầy đồng phải được kết nối với nguồn điện hoặc mặt đất. Khoảng cách giữa các lỗ nối vẫn là bước sóng 1/20 và có thể không cần kết nối ở mọi nơi, nhưng nên được kết nối trong điều kiện lý tưởng.

Bảng 10 lớp có trở kháng rất thấp giữa 10 hoặc 12 lớp của bảng do lớp cách nhiệt rất mỏng giữa các bảng nhiều lớp. Miễn là không có vấn đề gì với việc xếp lớp và xếp chồng lên nhau, bạn có thể mong đợi tính toàn vẹn tín hiệu tốt. Việc sản xuất các tấm 12 lớp với độ dày 62mil là khó khăn hơn và không có nhiều nhà sản xuất có thể xử lý các tấm 12 lớp. Vì luôn có một lớp cách nhiệt giữa các lớp tín hiệu và các lớp vòng lặp, giải pháp phân bổ 6 lớp trung gian trong thiết kế bảng 10 lớp để định tuyến các đường tín hiệu không phải là tốt nhất. Ngoài ra, điều quan trọng là làm cho lớp tín hiệu liền kề với lớp vòng lặp, tức là bố trí bảng là tín hiệu, mặt đất, tín hiệu, tín hiệu, nguồn điện, mặt đất, tín hiệu, tín hiệu, mặt đất và tín hiệu. Thiết kế này cung cấp một con đường tốt cho dòng tín hiệu và dòng vòng của nó. Chiến lược định tuyến phù hợp là định tuyến theo hướng X trên tầng 1, Y trên tầng 3 và X trên tầng 4, v.v. Trực quan, các tầng 1 và 3 là một cặp kết hợp phân tầng, các tầng 4 và 7 là một cặp kết hợp phân tầng, trong khi các tầng 8 và 10 là cặp kết hợp phân tầng cuối cùng. Khi cần thay đổi hướng cáp, đường tín hiệu ở lớp đầu tiên nên sử dụng "qua lỗ" để đến lớp thứ ba và sau đó thay đổi hướng. Trong thực tế, điều này có thể không phải lúc nào cũng có thể, nhưng như một khái niệm thiết kế, nó phải được theo dõi càng nhiều càng tốt. Tương tự như vậy, khi định tuyến tín hiệu thay đổi hướng, nó nên đi qua lỗ từ lớp 8 và 10 hoặc từ lớp 4 đến lớp 7. Hệ thống dây này đảm bảo khớp nối chặt chẽ nhất giữa đường dẫn chuyển tiếp và vòng lặp của tín hiệu. Ví dụ, nếu tín hiệu được định tuyến trên lớp đầu tiên và vòng lặp được định tuyến trên lớp thứ hai và chỉ trên lớp thứ hai, tín hiệu trên lớp thứ nhất được truyền qua "lỗ hổng" đến lớp thứ ba. Vòng lặp vẫn ở lớp thứ hai để duy trì các đặc tính của điện cảm thấp, điện dung lớn và hiệu suất che chắn điện từ tốt. Điều gì sẽ xảy ra nếu hệ thống dây điện thực sự không hoạt động theo cách đó? Ví dụ, một đường tín hiệu trên tầng đầu tiên đi qua lỗ để đến tầng thứ mười. Tại thời điểm này, tín hiệu vòng lặp phải tìm mặt phẳng mặt đất từ lớp 9 và dòng điện vòng lặp phải tìm mặt đất gần nhất thông qua (ví dụ: pin mặt đất của điện trở hoặc tụ điện). Nếu tình cờ có một lối đi như vậy gần đó, bạn thực sự may mắn. Nếu không có lỗ thông gần như vậy, cảm ứng sẽ lớn hơn, điện dung sẽ giảm và EMI chắc chắn sẽ tăng lên. Khi đường tín hiệu phải rời khỏi cặp dây hiện tại sang các lớp dây khác qua lỗ, lỗ nối đất nên được đặt gần lỗ nối để tín hiệu vòng lặp có thể quay trở lại thành tầng nối đất thích hợp một cách trơn tru. Đối với sự kết hợp nhiều lớp của lớp 4 và 7, vòng lặp tín hiệu sẽ được trả lại từ lớp nguồn hoặc hình thành (tức là lớp 5 hoặc 6), vì điện dung giữa lớp nguồn và hình thành được ghép nối tốt và tín hiệu dễ truyền.

Thiết kế nhiều lớp điện Nếu hai lớp điện của cùng một nguồn điện áp yêu cầu đầu ra dòng điện lớn, bảng mạch nên được chia thành hai nhóm lớp điện và tầng nối. Trong trường hợp này, lớp cách nhiệt được đặt giữa mỗi cặp nguồn và lớp nối. Bằng cách này, chúng tôi có được hai cặp bus cung cấp điện có trở kháng bằng nhau, chúng thực hiện điện áp riêng phần trên dòng điện mong muốn của chúng tôi. Nếu xếp chồng các lớp công suất dẫn đến trở kháng không bằng nhau, bộ chia sẽ không đồng đều, điện áp thoáng qua sẽ lớn hơn nhiều và EMI sẽ tăng mạnh. Nếu có nhiều điện áp nguồn với các giá trị khác nhau tồn tại trên bảng mạch, nhiều lớp nguồn sẽ được yêu cầu tương ứng. Hãy nhớ để tạo ra cặp của riêng bạn cung cấp điện và địa tầng cho các nguồn điện khác nhau. Trong cả hai trường hợp trên, hãy nhớ các yêu cầu của nhà sản xuất đối với cấu trúc cân bằng khi xác định vị trí của các lớp điện và tầng nối trên bảng mạch.