EMI sorunlarını çözmek için birçok yol var. Modern EMI baskı metodları: EMI baskı kodlamaları kullanarak, uygun EMI baskı parçalarını seçerek ve EMI simülasyon tasarımı. En temel PCB düzeninden başlayınca, bu makal EMI radyasyonunu kontrol etmek üzere PCB katlı düzenleme tekniklerinin rolü ve tasarlama tekniklerini tartışıyor.
Güç otobüsü
IC'nin enerji teslimatı pinlerinin yakınlarında uygun kapasitelerin düzgün yerleştirilmesi IC çıkış voltajını daha hızlı atlatabilir. Ama sorun burada bitmiyor. Kapacitörün sınırlı frekans cevabı yüzünden, kapasitör IC çıkışını tamamen frekans grubunda temiz sürmek için gereken harmonik gücü üretemez. Ayrıca, elektrik otobüsünde oluşturduğu geçici voltaj, çözümleme yolunun induktansının üzerinde voltaj düşürülecek ve bu geçici voltalar, EMI araştırma kaynağı temel ortak modudur. Bu sorunları nasıl çözelim?
Dönüş tahtasındaki IC ile ilgili, IC etrafındaki güç katmanı temiz çıkış için yüksek frekans enerjisini sağlayan diskretli kapasitör tarafından sızdırılan enerjinin bir parças ını toplayabilir. Ayrıca iyi bir güç katmanının incelemesi küçük olmalı, bu yüzden induktans tarafından sintezleştirilen geçici sinyal de küçük, bu yüzden ortak EMI modunu azaltmak için kullanılan. Elbette, elektrik katmanı ve IC elektrik patmanı arasındaki bağlantı mümkün olduğunca kısa olmalı, çünkü dijital sinyalinin yükselen kısmı hızlı ve hızlı geliyor, ve bunu IC elektrik pinsinin bulunduğu patlamaya doğrudan bağlamak en iyisi. Bu konuyu ayrı olarak tartışmalı. Ortak modu EMI kontrol etmek için, güç uça ğı ayrılmaya yardım etmeli ve yeterince düşük bir etkisi olmalı. Bu güç uça ğı iyi tasarlanmış bir çift güç uçağı olmalı. Biri sorabilir ki, ne kadar iyi? Sorunun cevabı güç teslimatı, katlar arasındaki materyaller ve operasyon frekansiyetine bağlı (yani IC'nin yükselmesi zamanının fonksiyonu).
Genelde elektrik katmanın uzanımı 6 mil ve karışık katmanı FR4 materyalidir. Her kare inç elektrik katmanının eşit kapasitesi yaklaşık 75pF.
Görünüşe göre, katı boşluğu daha küçük, kapasitesi daha büyük. 100'den 300'den yükselen bir sürü cihaz yok, ama şu anda IC geliştirme hızına göre, 100'den 300'den yükselen cihazlar yükselen bir bölüm yüksek olacak. 100 ile 300p yükselen devreler için 3 mil katı uzağı çoğu uygulamalar için uygun olmayacak. O zamanlar, sütun teknolojisini 1 milden az bir katman uzaklığıyla kullanmak ve FR4 dielektrik materyalleri yüksek dielektrik constant ile materyallerle değiştirmek gerekiyordu. Şimdi, keramik ve keramik plastik tasarım gerekçelerini 100 ile 300 ps arttırma zamanı devrelerinde uygulayabilir. Yeni materyaller ve yeni metodlar gelecekte kullanılabilir olsa da, bugünkü ortak 1-3 ns zamanlı devreler, 3-6 mil katı uzay ve FR4 dielektrik materyaller için, genelde yüksek sonu harmonik yönetmek ve geçici sinyali yeterince düşürmek için yeterince yeterli, yani diğer s özlerde ortak EMI modu çok düşük olabilir. Bu makalede verilen PCB katlı dizayn örnekleri 3 ile 6 mil boyunca bir katı uzağını tahmin edecek.
Sinyal izlerinin perspektivinden iyi bir katma stratejisi, tüm sinyal izlerini bir ya da birkaç katta yerleştirmek gerekir. Bu katlar enerji katı ya da toprak katının yanındadır. Elektrik tasarımı için iyi bir katlama stratejisi, güç katı toprak katına yakın ve güç katı ve toprak katı arasındaki mesafe mümkün olduğunca küçük olmalı. Buna "layering" strateji deniyoruz.
PCB stacking için hangi takım strateji korumaya ve EMI'yi bastırmaya yardım ediyor? Aşa ğıdaki katlanma tasarımı, enerji tekrar bir kattaki akışlarını ve tek voltaj ya da çoklu voltaj aynı katmanın farklı bölgelerinde dağıtılır. Çoklu güç katlarının davası sonra tartışılacak.
4 katı tahtası
4 katı tahta tasarımı ile birkaç potansiyel sorun var. İlk önce, geleneksel dört katlı tahta 62 mil kalınlığıyla, sinyal katı dışarıdaki katta olsa bile ve güç ve yer katları iç katta, güç katı ve yer katı arasındaki mesafe hâlâ çok büyük.
Eğer maliyetin ihtiyacı ilk olursa, bu iki geleneksel 4 katı tahta alternatifi düşünebilirsiniz. Bu iki çözüm EMI baskısının performansını geliştirebilir, fakat sadece tahtadaki komponent yoğunluğunun yeterince düşük olduğu uygulamalar için uygulayabilir ve komponentlerin etrafında yeterince alan var (gerekli elektrik bakır katını yerleştirin). İlk, tercih edilen çözüm. PCB'nin dışındaki katları tüm yer katları ve orta iki katı sinyal/güç katları. Sinyal katmanındaki güç teslimatı geniş bir çizgi ile yönlendirildir. Bu da enerji teslimatının yolunu düşük yapabilir, ve sinyal mikrostrup yolunun engellemesi de düşük. EMI kontrolünün perspektivinden, bu en iyi 4 katı PCB yapısıdır. İkinci taslağa göre dış katı güç ve yer kullanır ve orta iki katı sinyaller kullanır. Gelenekli 4 katı tahtasıyla karşılaştırıldı, geliştirme daha küçük, ve katı impedansı geleneksel 4 katı tahtası kadar fakir. Eğer izler impedansını kontrol etmek istiyorsanız, yukarıdaki toprak planı güç ve toprak adaların altında izleri düzenlemek için çok dikkatli olmalı. Ayrıca, elektrik teslimatı ya da toprak katı üzerindeki bakra adaları DC ve düşük frekans bağlantısını sağlamak için mümkün olduğunca bağlantılı olmalı.
6 katı tahtası
Eğer 4 katı tahtasındaki komponentlerin yoğunluğu relativ yüksektirse, 6 katı tahtası en iyidir. Ancak 6 katlı tahta tasarımında bazı takım tasarımlar elektromagnetik alanı korumak için yeterince iyi değildir ve enerji otobüsünün geçici sinyalini azaltmak üzere küçük etkisi vardır.
10 katı tahtası
Çoklukatılık tahtaların arasındaki izolasyon katı çok ince olduğundan beri devre tahtasının 10 ya da 12 katı arasındaki impedans çok düşük. Yükselme ve sıkıştırma konusunda sorun olmadığı sürece, mükemmel sinyal düzenliğini elde etmesi bekleniyor. 12 katı tahtaları 62mil kalınlığıyla üretilmek daha zor. 12 katı tahtaları işleyebilen bir sürü üretici yok.
Eğer delikten bu kadar yakın olmazsa, induktans daha büyük olacak, kapasitet azaldırılacak ve EMI kesinlikle artırılacak. Sinyal çizgisinin günümüzdeki PCB düzenleme katlarının diğer düzenleme katlarını vialları aracılığıyla bırakması gerektiğinde, yeryüzü vialların yakınlarına yerleştirilmesi gerekiyor, böylece dönüş sinyali düzgün yerleştirme katına kolayca dönmesi gerekiyor. 4. ve 7. katının katı kombinasyonu için sinyal dönüşü enerji katından ya da toprak katından dönecek (yani 5. ya da 6. katı), çünkü güç katı ve toprak katı arasındaki kapasitetli bağlantı iyi ve sinyal yayılmak kolay.