PCB çoklu katı devre tablosu tasarımında EMI sorunu nasıl çözeceğiz EMI sorunlarını çözmek için birçok yol var. Modern EMI baskı metodları: EMI baskı kodlamaları kullanarak, uygun EMI baskı parçalarını seçerek ve EMI simülasyon tasarımı. Bu makale, Shenzhen devre tahtası üreticisinden gelen düzenleyici, BMI radyasyonunu kontrol etmek üzere katlanan PCB çokatı devre tahtasının rolünü ve tasarlama tekniklerini tartışıyor.
elektrik otobüsü
IC'nin enerji tasarımının yakınlarında uygun kapasitesinin kapasitesini düzgün yerleştirmesi IC çıkış voltajını daha hızlı atlatabilir. Ama sorun burada bitmiyor. Kapacitörün sınırlı frekans cevabı yüzünden, kapasitör IC çıkışını tamamen frekans grubunda temiz sürmek için gereken harmonik gücü üretemez. Ayrıca, elektrik otobüsünde oluşturduğu geçici voltaj, çözümleme yolunun induktansının üzerinde voltaj düşürülecek ve bu geçici voltalar, EMI araştırma kaynağı temel ortak modudur. Bu sorunları nasıl çözelim?
Dönüş tahtasındaki IC ile ilgili, IC etrafındaki güç katmanı temiz çıkış için yüksek frekans enerjisini sağlayan diskretli kapasitör tarafından sızdırılan enerjinin bir parças ını toplayabilir. Ayrıca iyi bir güç katmanının incelemesi küçük olmalı. Bu yüzden induktans tarafından sintezleştirilen geçici sinyal de küçük, bu yüzden ortak EMI modunu azaltmak için kullanılan.
Elbette, elektrik katmanı ve IC elektrik patmanı arasındaki bağlantı mümkün olduğunca kısa olmalı, çünkü dijital sinyalinin yükselen kısmı hızlı ve hızlı geliyor, ve bunu IC elektrik pinsinin bulunduğu patlamaya doğrudan bağlamak en iyisi. Bu konuyu ayrı olarak tartışmalı.
Ortak modu EMI kontrol etmek için, güç uça ğı ayrılmaya yardım etmeli ve yeterince düşük bir etkisi olmalı. Bu güç uça ğı iyi tasarlanmış bir çift güç uçağı olmalı. Biri sorabilir ki, ne kadar iyi? Sorunun cevabı güç teslimatı, katlar arasındaki materyal ve operasyon frekansiyetine bağlı (yani IC yükselmesi zamanının fonksiyonu). Genelde elektrik katmanın uzağı 6 mil ve karışık katmanın FR4 cam fiber tahtası materyalidir. Elektrik katmanının kare santimetre ekvivalent kapasitesi yaklaşık 75pF. Görünüşe göre, katmanın boşluğu daha küçük, kapasitenin daha büyük.
100'den 300'den yükselen bir sürü cihaz yok, ama şu anda IC geliştirme hızına göre, 100'den 300'den yükselen cihazlar yükselen bir bölüm yüksek olacak. 100 ile 300p yükselen devreler için 3 mil katı uzağı çoğu uygulamalar için uygun olmayacak. O zamanlar, 1 milden az uzakta bir katman teknolojisini kabul etmek ve FR4 bardak fiber tahtası dielektrik maddelerini değiştirmek için yüksek bir dielektrik konstantiyle bir materyal kullanmak gerekiyordu. Şimdi, keramik ve keramik plastik tasarım gerekçelerini 100'e 300'e kadar arttırma zamanı devrelerinde uygulayabilir.
Yeni materyaller ve yeni metodlar gelecekte kullanılabilir olsa da, bugünkü 1-3 ns sıradaki zaman devreleri yükseliyor, 3-6 mil katı boşluğu ve FR4 dielektrik materyalleri, genelde yüksek sonu harmonikleri yönetmek ve geçici sinyali yeterince düşürmek için yeterince yeterli, yani, ortak moda EMI çok düşük olabilir. Bu makalede verilen PCB katlı dizayn örnekleri 3 ile 6 mil boyunca bir katı uzağını tahmin edecek.
Elektromagnetik koruması
Sinyal izlerinin perspektivinden iyi bir katma stratejisi, tüm sinyal izlerini bir ya da birkaç katta yerleştirmek gerekir. Bu katlar enerji katı ya da toprak katının yanındadır. Elektrik tasarımı için iyi bir katlama stratejisi, güç katı toprak katına yakın ve güç katı ve toprak katı arasındaki mesafe mümkün olduğunca küçük olmalı. Buna "layering" strateji deniyoruz.
PCB devre tahtası
Eİ'yi korumaya ve bastırmaya ne yardım ediyor? Aşa ğıdaki katlanma tasarımı, enerji tekrar bir kattaki akışlarını ve tek voltaj ya da çoklu voltaj aynı katmanın farklı bölgelerinde dağıtılır. Çoklu güç katlarının davası sonra tartışılacak.
4 katı devre tahtası
4 katı devre tablosu tasarımında birkaç potansiyel sorun var. İlk önce, geleneksel dört katlı tahta 62 mil kalınlığıyla, sinyal katı dışarıdaki katta olsa bile ve güç ve yer katları iç katta, güç katı ve yer katı arasındaki mesafe hâlâ çok büyük.
Eğer maliyetin ihtiyacı ilk olursa, bu iki geleneksel 4 katı tahta alternatifi düşünebilirsiniz. İkisi de bu çözümler EMI baskısının performansını geliştirebilir, fakat sadece tahtadaki komponent yoğunluğunun yeterince düşük olduğu uygulamalar için uygulayabilir ve komponentlerin etrafında yeterince alan var (gerekli elektrik temizleme bakı katını yerleştirin).
İlk, tercih edilen çözüm. PCB devre tahtasının dışındaki katları tüm yer katları ve orta iki katı sinyal/güç katları. Sinyal katmanındaki güç teslimatı geniş bir çizgi ile yönlendirildir. Bu da enerji teslimatının yolunu düşük yapabilir, ve sinyal mikrostrup yolunun engellemesi de düşük. EMI kontrolünün perspektivinden, bu en iyi 4 katı PCB yapısıdır. İkinci taslağa göre dış katı güç ve yer kullanır ve orta iki katı sinyaller kullanır. Gelenekli 4 katı tahtasıyla karşılaştırıldı, gelişme daha küçüktür, ve karşılaştırma impedansı geleneksel 4 katı tahtası kadar fakir.
Eğer izler impedansını kontrol etmek istiyorsanız, yukarıdaki toprak planı güç ve toprak adaların altında izleri düzenlemek için çok dikkatli olmalı. Ayrıca, elektrik teslimatı ya da toprak katı üzerindeki bakra adaları DC ve düşük frekans bağlantısını sağlamak için mümkün olduğunca bağlantılı olmalı.
6 katı devre tahtası
Eğer 4 katı devre tahtasında komponent yoğunluğu relativ yüksektirse, 6 katı tahtası en iyidir. Ancak, 6 katı devre tahtasının tasarımında, bazı takım tasarımlar elektromagnetik alanı korumak için yeterince iyi değildir ve enerji otobüsünün geçici sinyalini azaltmak üzere küçük etkisi vardır. İki örnek aşağıda tartışılıyor.
İlk örneğinde, enerji temsili ve toprak ikinci ve beşinci katlara göre yerleştirilir. Elektrik tasarımının yüksek bakra engellemesi yüzünden, ortak EMI radyasyonunu kontrol etmek çok faydasız. Bu yöntem çok doğru.
İkinci örnekte, enerji temsili ve toprak 3. ve 4. katta yerleştirilir. Bu tasarım güç sağlama bakıcısı impedansı sorunu çözer. 1. ve 6. katların zayıf elektromagnetik kalkanlık performansı yüzünden, farklı modun EMI arttırıldı. Eğer iki dış kattaki sinyal çizgilerin sayısı en azındaysa ve izler uzunluğu çok kısa (sinyalin en yüksek harmonik dalgasının 1/20'den daha kısa), bu tasarım farklı modunun EMI problemini çözebilir. Bakar çarpılmış bölgeyi, dışarıdaki katta hiç bir parças ıyla doldurun ve bakar çarpılmış bölgeyi (her 1/20 dalga uzunluğunu bir aralık olarak) yerleştirin. Bu, özellikle farklı EMI modunu bastırmakta iyi. Daha önce bahsettiği gibi, bakra bölgesini birçok noktada iç toprak uçağıyla bağlamak gerekiyor.
Öyle mi?